Dotmim.Sync
Release 0.9.5

Jul 18, 2022

DMS

1 Starting from scratch 3

2 Need Help 5

Dotmim.Sync, Release 0.9.5

arms

DotMim.Sync (DMS) is a straightforward framework for syncing relational databases, developed on top of .Net
Standard 2.0, available and ready to use within IOT, Xamarin, .NET, .NET Core, UWP and so on :)

Auvailable for syncing SQL Server, MySQL, MariaDB and Sqlite databases.

Note: The source code is available on Github.

This framework is still in beta. There is no support other than me and the time I can put on it. Don’t be afraid to reach
me out, but expect delay sometimes :)

SglSyncProvider | | RemoteOrchestrator ‘ | SyncAgent ‘ | LocalOrchestrator | ‘ SqliteSyncProvider

DMS 1

https://www.github.com/mimetis/dotmim.sync

Dotmim.Sync, Release 0.9.5

2 DMS

CHAPTER 1

Starting from scratch

Here is the easiest way to create a first sync, from scratch :
* Create a .Net Standard 2.0 compatible project, like a .Net Core 2.0 / 3.1 or .Net Fx 4.8 console application.
* Add the nugets packages DotMim.Sync.SqlServer and DotMim.Sync.Sqlite

* If you don’t have any hub database for testing purpose, use this one : AdventureWorks lightweight script for
SQL Server

* If you want to test MySql, use this script : AdventureWorks lightweight script for MySQL Server
Add this code:

// Sql Server provider, the "server" or "hub".
SglSyncProvider serverProvider = new SglSyncProvider (
@"Data Source=.;Initial Catalog=AdventureWorks; Integrated Security=true;");

// Sqglite Client provider acting as the "client"
SgliteSyncProvider clientProvider = new SqgliteSyncProvider ("advworks.db");

// Tables involved in the sync process:

var setup = new SyncSetup ("ProductCategory", "ProductDescription", "ProductModel",
"Product", "ProductModelProductDescription", "Address", "Customer",
"CustomerAddress", "SalesOrderHeader", "SalesOrderDetail");

// Sync agent
SyncAgent agent = new SyncAgent (clientProvider, serverProvider);

do
{

var result = await agent.SynchronizeAsync (setup);
Console.WriteLine (result);

} while (Console.ReadKey () .Key != ConsoleKey.Escape);

And here is the result you should have, after a few seconds:

https://www.nuget.org/packages/Dotmim.Sync.SqlServer
https://www.nuget.org/packages/Dotmim.Sync.Sqlite
/CreateAdventureWorks.sql
/CreateAdventureWorks.sql
/CreateMySqlAdventureWorks.sql

Dotmim.Sync, Release 0.9.5

Synchronization done.
Total changes uploaded: 0
Total changes downloaded: 2752
Total changes applied: 2752
Total resolved conflicts: 0
Total duration :0:0:3.776

You’re done !

Now try to update a row in your client or server database, then hit enter again. You should see something like that:

Synchronization done.
Total changes uploaded: 0
Total changes downloaded: 1
Total changes applied: 1
Total resolved conflicts: 0
Total duration :0:0:0.045

Yes it’s blazing fast !

4 Chapter 1. Starting from scratch

CHAPTER 2

Need Help

Feel free to ping me: @sebpertus

2.1 Overview

Dotmim.Sync (DMS) is the easiest way to handle a full synchronization between one server database and multiples
clients databases.

Dotmim.Sync is cross-platforms, multi-databases and based on .Net Standard 2.0.
Choose either SQL Server, SQLite, MySQL, MariaDB and (hopefully, I hope soon...) Oracle or PostgreSQL !

For simplicity, we can say DMS framework.

No need to handle any configuration file, or code generation code or whatever.

Just a few lines of code, with the list of tables you want to synchronize then call SynchronizeAsync () and
you’re done !

http://www.twitter.com/sebpertus

Dotmim.Sync, Release 0.9.5

2.1.1 Nuget packages

Basically, DMS is working with sync database providers, that are available through nuget, from the Visual Studio
interface:

B Dotmim.Sync.Core by Sébastien Pertus, 906K downloads viL5.0

Dotmam Sync core assemibly. Manage a sync process beetween two relational datsbases prowider. Can't be used alone. Choose a server and a

e previder such as Datrmirn,Syne. SqlserverProvider or Dotrmirm.Sync.SqliteProvider

% Dotmim.Sync.SqlServer by Sébastien Pertus, B.5TK downloads VL5
Sql Server Sync Provider, Manage a sync process beetween two relational databases provider, This provider works with 0L Server and can be

Prereiepe used as Client or Server proveder (Nt Standard 2.0

a Dotmim.Sync.Sqlite by Sébastien Pertus, 786K downloads V50

S0Lite Syne Provider, Manage a sync process beetween two relational databases provider, This provider works with 500 Server and can be

Pearadais |\oed only as Chent provider. Use SqifyncProvider or MySqiSyncProvider for the server side Met Standard 2.0

B Dotmim.Sync.Web.Client by Sébastien Pertus, 3,32K downloads v0.5.0

Praxy te be able to Syne threugh an ASP.MET CORE applicstion. Choose a Dotmam.Syne provider and protects your database call through web
api calls anly, this assembly is meant to be used frorm within your client application and will execute all the hitp calls

B Dotmim.Sync.MySql by Sébastien Pertus, 4, 84K downloads VIS0

Why'Sgl Sync Provider. Manage a sync process beetween two relational databases provider. Thas provader works with 50U Server and can be
used as Client ar Server provader Met Standard 2.0

e Dotmim.Sync.Web Server by Sébastien Pertus, 2,72K downloads VLS

Prony to be able to Sync through an ASP.NET CORE application. Choose a Dotmim.Sync provider and protects your database call through web:
api calls anby. This assembdy is meant to be used from youwr ASP.Net core Web Api project, and will handle all hitp requests calls.

| Dotmim.Sync.5glServer.ChangeTracking by Sébastien Pertus, 462 downloads ViS50

Sl Server Sync Provider, Manage a sync process beetween two relational databases provider, This provider works with SOL Server and can be
Pesraiaaas used as Client or Server provider. Based on SqlSyncProvider, but uses the 501 Sercer change tracking feature instead of tracking tables. Met...

Obviously, you can add them through your command line, assuming you are developing with Visual Studio Code,
Rider or even Notepad :)

Adding the package required to synchronize a SQL Server database:
dotnet add package Dotmim.Sync.SglServer

Adding the package required to synchronize a SQL Server database, using Change,,
—Tracking feature:

dotnet add package Dotmim.Sync.SglServer.ChangeTracking

Adding the package required to synchronize a MySQL database:
dotnet add package Dotmim.Sync.MySqgl

Adding the package required to synchronize a MariaDB database:
dotnet add package Dotmim.Sync.MariaDB

Adding the package required to synchronize a SQLite database:
dotnet add package Dotmim.Sync.Sglite

For instance, if you need to synchronize two MySql databases, the only package you need to install, on both Server
and Client side, is Dotmim. Sync.MySql.

On the other side, if you need to synchronize a SQL server database, with multiple SQLite client databases, install
Dotmim.Sync.SglServer (or Dotmim. Sync.SglServer.ChangeTracking) on the server side and then
install Dotmim. Sync.Sglite on each client.

Note: The package Dotmim.Sync.Core is the core framework, and is used by all the providers. You don’t have
to explicitely add it to your projects, since it’s always part of the provider you’ve just installed.

The last two packages available, Dotmim. Sync.Web.Client and Dotmim. Sync.Web. Server are used for a
specific scenario, where you server database is not accessible directly, but instead is available and exposed through a

6 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

Web Api, built with ASP.Net Core or ASP.NET.

All packages are available through nuget.org:

Dotmim.Sync.Core : https://www.nuget.org/packages/Dotmim.Sync.Core
Dotmim.Sync.SqlServer : https://www.nuget.org/packages/Dotmim.Sync.SqlServer

Dotmim.Sync.SqlSyncChangeTrackingProvider :
https://www.nuget.org/packages/Dotmim.Sync.SqlServer.ChangeTracking

Dotmim.Sync.Sqlite : https://www.nuget.org/packages/Dotmim.Sync.Sqlite
Dotmim.Sync.MySql : https://www.nuget.org/packages/Dotmim.Sync.MySql
Dotmim.Sync.MariaDB : https://www.nuget.org/packages/Dotmim.Sync.MariaDB
Dotmim.Sync.Web.Server : https://www.nuget.org/packages/Dotmim.Sync. Web.Server
Dotmim.Sync.Web.Client : ttps://www.nuget.org/packages/Dotmim.Sync.Web.Client

2.1.2 Tutorial: First sync
First sync

This tutorial will describe all the steps required to create a first sync between two relational databases:
* If you don’t have any databases ready for testing, you can use:
— For SQL Server : AdventureWorks for SQL Server
— For MySQL : AdventureWorks for MySQL
* The script is ready to execute in SQL Server (or MySQL Workbench). It contains :
— A lightweight AdvenureWorks database, acting as the Server database (called AdventureWorks)

— An empty database, acting as the Client database (called Client)

Hint: You will find this sample here : HelloSync sample

You can see this sample as well, live, hosted on dotnetfiddle : Hello Sync On dotnetfiddle

Warning: In the code sample below, we are wusing a special provider called
SglSyncChangeTrackingProvider. This provider is using the CHANGE_TRACKING feature
from SQL SERVER.

Before running this code, use this SQL statement on your server database to enable the Change Tracking:

ALTER DATABASE AdventureWorks SET CHANGE_TRACKING=ON
(CHANGE_RETENTION=2 DAYS,AUTO_CLEANUP=ON)

Otherwise, if you don’t want to use the Change Tracking feature, just change
SglSyncChangeTrackingProvider to SglSyncProvider

// First provider on the server side, 1s using the Sql change tracking feature.
var serverProvider = new SglSyncChangeTrackingProvider (serverConnectionString);

// IF you want to try with a MySqgl Database, use the [MySqglSyncProvider] instead

(continues on next page)

2.1. Overview 7

https://www.nuget.org/packages/Dotmim.Sync.Core
https://www.nuget.org/packages/Dotmim.Sync.SqlServer
https://www.nuget.org/packages/Dotmim.Sync.SqlServer.ChangeTracking
https://www.nuget.org/packages/Dotmim.Sync.Sqlite
https://www.nuget.org/packages/Dotmim.Sync.MySql
https://www.nuget.org/packages/Dotmim.Sync.MariaDB
https://www.nuget.org/packages/Dotmim.Sync.Web.Server
ttps://www.nuget.org/packages/Dotmim.Sync.Web.Client
https://github.com/Mimetis/Dotmim.Sync/blob/master/CreateAdventureWorks.sql
https://github.com/Mimetis/Dotmim.Sync/blob/master/CreateMySqlAdventureWorks.sql
https://github.com/Mimetis/Dotmim.Sync/blob/master/Samples/HelloSync
https://dotnetfiddle.net
https://dotnetfiddle.net/CZgNDm

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// var serverProvider = new MySqglSyncProvider (serverConnectionString);

// Second provider on the client side, is the [SqgliteSyncProvider] used for SQLite_
—databases

// relying on triggers and tracking tables to create the sync environment

var clientProvider = new SgliteSyncProvider (clientConnectionString);

// Tables involved in the sync process:
var setup = new SyncSetup ("ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader", "SalesOrderDetail"

)7

// Creating an agent that will handle all the process
var agent = new SyncAgent (clientProvider, serverProvider);

do
{
// Launch the sync process
var sl = await agent.SynchronizeAsync (setup);
// Write results
Console.WriteLine (sl);

} while (Console.ReadKey () .Key != ConsoleKey.Escape);

Console.WriteLine ("End");

And here is the result you should have, after a few seconds:

Synchronization done.
Total changes uploaded: O
Total changes downloaded: 2752
Total changes applied: 2752
Total resolved conflicts: 0
Total duration :0:0:3.776

It took almost 4 seconds on my machine to make a full synchronization between the Server and the Client.

Second sync

This first sample took almost 4 seconds to make a full sync between a Server and a Client.
It’s a little bit long, because, under the hood, the Dotmim. Sync framework, on the first sync only, will have to:

* Get the schema from the Server side and create all the tables on the Client side, if needed. (yes, you don’t need
a client database with an existing schema)

* Create on both side all the required stuff to be able to manage a full sync process, creating tracking tables, stored
procedures, triggers and so on ... be careful, Dotmim. Sync could be a little bit intrusive if you’re not using
the SglSyncChangeTrackingProvider provider :)

* Then eventually launch the first sync, and get the 2752 items from the Server, and apply them on the Client.
Now everything is configured and the first sync is successfull.

We can add 101 items in the ProductCategory table (on the server side, Adventureworks):

8 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

Insert into ProductCategory (Name)
Select SUBSTRING (CONVERT (varchar (255),

Go 100

NEWID ()),

0,

7)

From the same console application (indeed, we have a do while loop), same code, just hit enfer to relaunch the
synchronization and see the results:

Synchronization done.
Total changes
Total changes
Total changes
Total resolved
Total duration

uploaded: 0
downloaded:
applied: 100
conflicts: O
:0:0:0.145

100

Boom, less than 150 milliseconds.

2.2 How does it work

Basically, DMS architecture is composed of several business objects:

* Providers : A provider is in charge of the communication with the local database. You can choose various
providers, like SQL, MySQL, MariaDB or Sglite. Each provider can work on both side of the sync architec-
ture : Server side or Client side.

¢ Orchestrators : An orchestrator is agnostic to the underlying database. it communicates with the database
through a provider. A provider is always required when you’re creating a new orchestrator. We have two kind
of orchestrator : local and remote (or let’s say client side and server side orchestrators)

* SyncAgent: There is only one sync agent. This object is responsible of the correct flow between two orchestra-
tors. The sync agent will:

— Create a local orchestrator with a typed provider.

— Create a remote orchestrator with a typed provider.

— Synchronize client and server, using all the methods from the orchestrators.

2.2.1 Overview

Here is the big picture of the components used in a simple synchronization, over TCP:

2.2. How does it work

Dotmim.Sync, Release 0.9.5

m.s.mﬁ m.e.‘ﬁ

SglSyncProvider | | RemoteOrchestrator ‘ | SyncAgent ‘ | LocalOrchestrator | ‘ SqliteSyncProvider

If we take a close look to the HelloSync sample:

var serverProvider
var clientProvider

new MySglSyncProvider (serverConnectionString);
new SgliteSyncProvider (clientConnectionString);

var setup = new SyncSetup ("ProductCategory", "ProductModel", "Product");
var agent = new SyncAgent (clientProvider, serverProvider);
var result = await agent.SynchronizeAsync (setup);

Console.WritelLine (result);

There is no mention of any Orchestrators here.

It’s basically because the SyncAgent instance will create them under the hood, for simplicity. We can rewrite this
code, this way:

// Create 2 providers, one for MySqgl, one for Sqglite.
var serverProvider = new MySglSyncProvider (serverConnectionString);
var clientProvider = new SgliteSyncProvider (clientConnectionString);

// Setup and options define the tables and some useful options.
var setup = new SyncSetup ("ProductCategory", "ProductModel", "Product");
var options = new SyncOptions{();

// Define a local orchestrator, using the Sqglite provider

// and a remote orchestrator, using the MySgl provider.

var localOrchestrator = new LocalOrchestrator (clientProvider, options);
var remoteOrchestrator = new RemoteOrchestrator (serverProvider, options);

// Create the agent with existing orchestrators
var agent = new SyncAgent (localOrchestrator, remoteOrchestrator);

// Launch the sync
var result = await agent.SynchronizeAsync (setup);

Console.WritelLine (result);

10 Chapter 2. Need Help

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/HelloSync

Dotmim.Sync, Release 0.9.5

As you can see here, all the components are declared:
» Each provider : One Sqlite and One MySql

¢ Each orchestrator : a local orchestrator coupled with the Sqlite provider and a remote orchestrator coupled with
the MySql provider

* One sync agent : The sync agent instance needs of course both orchestrators to be able to launch the sync
process.

2.2.2 Multiple clients overview

Of course, a real scenario will involve more clients databases. Each client will have its own provider, depending on
the local database type. And each client will have a sync agent, responsible of the sync process:

T
|
21
o

SqglsyncProvider RemoteOrchestrator SyncAgent LocalOrchestrator Providers

2.2.3 Sync over HTTP

In a real world scenario, you may want to protect your hub database (the server side database), if your clients are
not part of your local network, like mobile devices which will communicate only through an http connection. In this
particular scenario, the sync agent will not be able to use a simple RemoteOrchestrator, since this one works only on
a tcp network. Here is coming a new orchestrator in the game. Or shoud I say two new orchestrators:

* The WebRemoteOrchestrator: This orchestrator will run locally, and will act “as” a orchestrator from
the sync agent, but under the hood will generate an http request with a payload containing all the required
information

* The WebServerAgent: On the opposite side, this web server agent is hosted through an exposed web api,
and will get the incoming request from the WebRemoteOrchestrator and will then call the server provider
correctly.

Here is the big picture of this more advanced scenario:

2.2. How does it work 11

Dotmim.Sync, Release 0.9.5

— D'Hn{)’_"c"‘_'a

N—O-H{&H.c R

sqisyncProvider WebsServerOrchestrator | WebClientOrchestrator SyncAgent LocalOrchestrator Providers

You can read more on the web architecture and how to implement it, here: Asp.net Core Web Api sync proxy

2.3 Synchronization types

You have one main method to launch a synchronization, with several optional parameters:

SynchronizeAsync () ;

SynchronizeAsync (IProgress<ProgressArgs> progress);

SynchronizeAsync (CancellationToken cancellationToken);

SynchronizeAsync (SyncType syncType);

SynchronizeAsync (SyncType syncType, CancellationToken cancellationToken);

You can use the CancellationToken object whenever you want to rollback an “in progress” synchronization.

And since we have an async synchronization, you can pass an IProgress<ProgressArgs> object to have
feedback during the sync process.

Note: The progression system is explained in the next chapter Progress

let’s see now a straightforward sample illustrating the use of the SyncType argument.

Hint: You will find the sample used for this chapter, here : SyncType sample

SglSyncProvider serverProvider = new SglSyncProvider (GetDatabaseConnectionString(
—"AdventureWorks")) ;

SglSyncProvider clientProvider = new SglSyncProvider (GetDatabaseConnectionString(
—"Client"));

var setup = new SyncSetup ("ProductCategory", "ProductModel", "Product", "Address",
—"Customer",
"CustomerAddress", "SalesOrderHeader", "SalesOrderDetail");

SyncAgent agent = new SyncAgent (clientProvider, serverProvider);

var syncContext = await agent.SynchronizeAsync (setup);

(continues on next page)

12 Chapter 2. Need Help

./Web.html
Progression.html
https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/SyncType

Dotmim.Sync, Release 0.9.5

(continued from previous page)

Console.WriteLine (syncContext);

Here is the result, after the first initial synchronization:

Synchronization done.
Total changes uploaded: 0
Total changes downloaded: 2752
Total changes applied: 2752
Total resolved conflicts: 0
Total duration :0:0:4.720

As you can see, the client has downloaded 2752 lines from the server.

Obviously if we made a new sync, without making any changes neither on the server nor the client, the result will be :

SglSyncProvider serverProvider = new SglSyncProvider (GetDatabaseConnectionString (
—"AdventureWorks")) ;

SglSyncProvider clientProvider = new SglSyncProvider (GetDatabaseConnectionString(
—"Client"));

SyncAgent agent = new SyncAgent (clientProvider, serverProvider);

var syncContext = await agent.SynchronizeAsync();

Console.WriteLine (syncContext);

Note: Since you’ve made a first sync before, the setup is already saved in the databases. So far, no need to pass the
argument anymore now.

Synchronization done.
Total changes uploaded: 0
Total changes downloaded: 0
Total changes applied: O
Total resolved conflicts: 0
Total duration :0:0:0.382

Ok make sense !

2.3.1 SyncType
The SyncType enumeration allows you to reinitialize a client database (already synchronized or not).

For various reason, you may want to re-download the whole database schema and rows from the server (bug, out of
sync, and soon...)

SyncType is mainly an enumeration used when calling the SynchronizeAsync () method:

public enum SyncType

{
/// <summary>
/// Normal synchronization
/// </summary>

(continues on next page)

2.3. Synchronization types 13

Dotmim.Sync, Release 0.9.5

(continued from previous page)

Normal,

/// <summary>

/// Reinitialize the whole sync database, applying all rows from the server,
—to the client

/// </summary>

Reinitialize,

/// <summary>

/// Reinitialize the whole sync database, applying all rows from the server,
—to the client,

/// after tried a client upload

/// </summary>

ReinitializeWithUpload

e SyncType.Normal: Default value, represents a normal sync process.

* SyncType.Reinitialize: Marks the client to be resynchronized. Be careful, any changes on the client
will be overwritten by this value.

e SyncType.ReinitializeWithUpload: Like Reinitialize this value will launch a process to resynchro-
nize the whole client database, except that the client will 7y to send its local changes before making the resync
process.

From the sample we saw before, here is the different behaviors with each SyncType enumeration value:

First of all, for demo purpose, we are updating a row on the client:

—-— initial value is 'The Bike Store'
UPDATE Client.dbo.Customer SET CompanyName='The New Bike Store' WHERE CustomerId = 1

SyncType.Normal

Let’s see what happens, now that we have updated a row on the client side, with a normal sync:

SglSyncProvider serverProvider = new SglSyncProvider (GetDatabaseConnectionString (
—"AdventureWorks")) ;

SglSyncProvider clientProvider = new SglSyncProvider (GetDatabaseConnectionString(
—"Client"));

var syncContext = await agent.SynchronizeAsync();

Console.WriteLine (syncContext);

Synchronization done.
Total changes wuploaded: 1
Total changes downloaded: 0
Total changes applied: 0O
Total resolved conflicts: 0
Total duration :0:0:1.382

The default behavior is what we were waiting for: Uploading the modified row to the server.

14 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

SyncType.Reinitialize

The SyncType.Reinitialize mode will reinitialize the whole client database.

Every rows on the client will be deleted and downloaded again from the server, even if some of them are not synced
correctly.

Use this mode with caution, since you could lost some “out of sync client” rows.

SglSyncProvider serverProvider = new SglSyncProvider (GetDatabaseConnectionString(
—"AdventureWorks")) ;

SglSyncProvider clientProvider = new SglSyncProvider (GetDatabaseConnectionString(
—~"Client"));

var syncContext = await agent.SynchronizeAsync(SyncType.Reinitialize);

Console.WriteLine (syncContext);

Synchronization done.
Total changes uploaded: 0
Total changes downloaded: 2752
Total changes applied: 2752
Total resolved conflicts: 0
Total duration :0:0:1.872

As you can see, the SyncType .Reinitialize value has marked the client database to be fully resynchronized.

The modified row on the client has not been sent to the server and then has been restored to the initial value sent by
the server row.

SyncType.ReinitializeWithUpload

ReinitializeWithUpload will do the same job as Reinitialize except it will send any changes available
from the client, before making the reinitialize phase.

SglSyncProvider serverProvider = new SglSyncProvider (GetDatabaseConnectionString(
—"AdventureWorks")) ;

SglSyncProvider clientProvider = new SglSyncProvider (GetDatabaseConnectionString(
—"Client"));

var syncResult = await agent.SynchronizeAsync (SyncType.ReinitializeWithUpload);

Console.WriteLine (syncResult) ;

Synchronization done.
Total changes uploaded: 1
Total changes downloaded: 2752
Total changes applied: 2752
Total resolved conflicts: 0
Total duration :0:0:1.923

In this case, as you can see, the SyncType.ReinitializeWithUpload value has marked the client database to
be fully resynchronized, but the edited row has been sent correctly to the server.

2.3. Synchronization types 15

Dotmim.Sync, Release 0.9.5

2.3.2 Forcing operations on the client from server side

Warning: This part covers some concept explained later in the next chapters:
* Progression : Using interceptors.

e HTTP architecture : Using ASP.Net Web API

This technic applies if you do not have access to the client machine, allowing you to force operations from the client
side.

It could be useful to override a normal synchronization, for example, with a reinitialization for a particular client,
from the server side.

Note: Forcing a reinitialization from the server is a good practice if you have an HTTP architecture.

Here are the operation action you can use to force the client in a particular situation:

public enum SyncOperation
{
/// <summary>
/// Normal synchronization
/// </summary>
Normal = 0,

/// <summary>

/// Reinitialize the whole sync database, applying all rows from the server to,,
—the client

/// </summary>

Reinitialize = 1,

/// <summary>
/// Reinitialize the whole sync database,
/// applying all rows from the server to the client, after trying a_
—client upload
/// </summary>
ReinitializeWithUpload = 2,

/// <summary>

/// Drop all the sync metadatas even tracking tables and scope infos and make a_
—full sync again

/// </summary>

DropAllAndSync = 4,

/// <summary>

/// Drop all the sync metadatas even tracking tables and scope infos and exit
/// </summary>

DropAllAndExit = 8,

/// <summary>
/// Deprovision stored procedures & triggers and sync again
/// </summary>

(continues on next page)

16 Chapter 2. Need Help

Progression.html#interceptor-t
Web.html

Dotmim.Sync, Release 0.9.5

(continued from previous page)

DeprovisionAndSync = 16,

Hint: Use the client scope id to identify the current client trying to sync.

[HttpPost]
public async Task Post ()
{
// Get the current scope name
var scopeName = this.HttpContext.GetScopeName () ;

// Get the current client scope id
var clientScopelId = this.HttpContext.GetClientScopelId();

// override sync type to force a reinitialization from a particular client
if (clientScopeld == OneParticularClientScopeIdToReinitialize)
{
webServerAgentRemoteOrchestrator.OnGettingOperation (operationArgs=>
{
// this operation will be applied for the current sync
operationArgs.Operation = SyncOperation.Reinitialize;
1)

// handle request
await webServerAgent.HandleRequestAsync (this.HttpContext);

2.3.3 SyncDirection

The SyncType enumeration allows you to synchronize all the tables.
Another way to synchronize your tables is to set a direction on each of them, through the SyncDirection enumeration.
This options is not global to all the tables, but should be set on each table.

You can specify three types of direction: Bidirectional, UploadOnly or DownloadOnly.

You can use the SyncDirection enumeration for each table in the SyncSetup object.

Note: Bidirectional is the default value for all tables added.

Since, we need to specify the direction on each table, the SyncDirection option is available on each
SetupTable:

var syncSetup = new SyncSetup("SalesLT.ProductCategory", "SalesLT.ProductModel",
—"SalesLT.Product",
"SalesLT.Address", "SalesLT.Customer", "SalesLT.CustomerAddress");

syncSetup.Tables["Customer"].SyncDirection = SyncDirection.DownloadOnly;
syncSetup.Tables["CustomerAddress"].SyncDirection = SyncDirection.DownloadOnly;
syncSetup.Tables["Address"].SyncDirection = SyncDirection.DownloadOnly;

(continues on next page)

2.3. Synchronization types 17

Dotmim.Sync, Release 0.9.5

(continued from previous page)

var agent = new SyncAgent (clientProvider, serverProvider);

SyncDirection.Bidirectional

This mode is the default one. Both server and client will upload and download their rows.

Using this mode, all your tables are fully synchronized with the server.

SyncDirection.DownloadOnly

This mode allows you to specify some tables to be only downloaded from the server to the client.

Using this mode, your server will not receive any rows from any clients, on the configured tables with the download
only option.

SyncDirection.UploadOnly

This mode allows you to specify some tables to be uploaded from the client to the server only.

Using this mode, your server will not send any rows to any clients, but clients will sent their own modified rows to the
server.

2.4 Orchestrators

2.4.1 Overview

An Orchestrator is agnostic to the underlying database.

it communicates with the database through a provider. A provider is always required when you’re creating a new
orchestrator.

We have two kind of orchestrators:

* Local Orchestrator (or let’s say client side orchestrator) : LocalOrchestrator.

* Remote Orchestrator or let’s say server side orchestrator) : RemoteOrchestrator.
We have to more kind of orchestrators, that will handle under the hood the web sync process:

* The WebRemoteOrchestrator: This orchestrator will run locally, and will act “as” a orchestrator from
the sync agent, but under the hood will generate an http request with a payload containing all the required
information

* The WebServerAgent: On the opposite side, this agent is hosted through an exposed web api, and will get
the incoming request from the WebRemoteOrchestrator and will then call the server provider correctly.

18 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

2.4.2 Orchestrators public methods
A set of methods are accessible from both LocalOrchestrator or RemoteOrchestrator (and for some of
them from WebRemoteOrchestrator).

Generaly, you have access to three methods (Create_XXX, Drop_XXX, Exists_XXX) for all the core components

* Stored Procedures
 Triggers

* Tracking Tables

* Tables

* Schemas

* Scopes

Here is some examples using these methods:

Get a table schema

This method runs on any Orchestrator, but we are using here a RemoteOrchestrator because the client
database is empty and getting a table schema from an empty database... well.. :)

var provider = new SglSyncProvider (serverConnectionString);
var options = new SyncOptions();
var setup = new SyncSetup (new string[] { "ProductCategory", "ProductModel", "Product"

1)

var orchestrator = new RemoteOrchestrator (provider, options, setup);

// working on the product Table
var productSetupTable = setup.Tables["Product"];

// Getting the table schema
var productTable = await orchestrator.GetTableSchemaAsync (productSetupTable);

foreach (var column in productTable.Columns)
Console.WritelLine (column) ;

ProductID - Int32

Name - String
ProductNumber - String
Color - String

StandardCost - Decimal
ListPrice - Decimal
Size - String

Weight - Decimal
ProductCategoryID - Int32
ProductModelID - Int32
SellStartDate — DateTime
SellEndDate - DateTime
DiscontinuedDate - DateTime
ThumbNailPhoto - Bytel]
ThumbnailPhotoFileName - String
rowguid - Guid

ModifiedDate - DateTime

2.4. Orchestrators 19

Dotmim.Sync, Release 0.9.5

Managing stored procedures

Managing Stored Procedures could be done using:

* LocalOrchestrator.CreateStoredProcedureAsync () : Create a stored procedure using the
DbStoredProcedureType enumeration, for one SetupTable argument.

* LocalOrchestrator.ExistStoredProcedureAsync (): Check if a stored procedure already exists,
using the DbStoredProcedureType enumeration, for one SetupTable argument.

* LocalOrchestrator.DropStoredProcedureAsync () : Drop a stored procedure using the
DbStoredProcedureType enumeration, for one SetupTable argument.

* LocalOrchestrator.CreateStoredProceduresAsync () : Create all stored procedures needed for
one SetupTable argument.

* LocalOrchestrator.DropStoredProceduresAsync () : Drop all stored procedures created for one
SetupTable argument.

Creating a stored procedure could be done like this:

var provider = new SglSyncProvider (serverConnectionString);

var options = new SyncOptions();

var setup = new SyncSetup (new string[] { "ProductCategory", "ProductModel", "Product"
—=1});

var orchestrator = new RemoteOrchestrator (provider, options, setup);

// working on the product Table
var productSetupTable = setup.Tables["Product"];

var spExists = await orchestrator.ExistStoredProcedureAsync (productSetupTable,
DbStoredProcedureType.SelectChanges) ;
if (!spExists)
await orchestrator.CreateStoredProcedureAsync (productSetupTable,
DbStoredProcedureType.SelectChanges) ;

20 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

= g AdventureWorks

Database Diagrams

= Tables
Systermn Tables
FileTables
External Tables
dbo.Address
dbo.BuildVersion
dbo.Custormer
dbo.CustormerAddress
dbo.ErrorLog
dbo.Product
dbo.ProductCategory
dbo.ProductDescription
dbo.ProductModel
dbo.ProductModelProductDescription
dbo.5alesOrderDetail
dbo.5alesOrderHeader

HEEHEEEEEEEEEEEE
- BH B B R B OB E R A

<
;

External Rescurces
Synonyms

0B B

Programmability

= Stored Procedures
Systemn Stored Procedures
dbo.Product_changes

Be careful, this stored procedure relies on a tracking table for table Product, but we did not create it, yet.

Creating a tracking table

Continuing on the last sample, we can create in the same way, the tracking table for table Product:

var provider = new SglSyncProvider (serverConnectionString);
var options = new SyncOptions{();
var setup = new SyncSetup (new string[] { "ProductCategory", "ProductModel", "Product"

1)
var orchestrator = new RemoteOrchestrator (provider, options, setup);

// working on the product Table
var productSetupTable = setup.Tables["Product"];

(continues on next page)

2.4. Orchestrators 21

Dotmim.Sync, Release 0.9.5

(continued from previous page)

var spExists = await orchestrator.ExistTrackingTableAsync (productSetupTable);
if (!spExists)
await orchestrator.CreateTrackingTableAsync (productSetupTable);

= g AdventureWorks

Database Diagrarns

=
Systemn Tables
FileTables
External Tables
dbo.Address
dbo.BuildVersion
dbo.Custorner
dbo.CustomerAddress
dbo.ErrorLog
dbo.Product
dbo.Product_tracking
dbo.ProductCategory
dbo.ProductDescription
dbo.ProductModel
dbo.ProductModelProductDescription
dbo.5alesOrderDetail
dbo.5alesOrderHeader

O = = = = = = 3 = == I Y 3

EH FEH EH EH G O B B B A A

Droping a tracking table and a stored procedure

Now we can drop this newly created stored procedure and tracking table:

var trExists = await orchestrator.ExistTrackingTableAsync (productSetupTable);
if (trExists)
await orchestrator.DropTrackingTableAsync (productSetupTable) ;

var spExists = await orchestrator.ExistStoredProcedureAsync (productSetupTable,
DbStoredProcedureType.SelectChanges) ;
if (spExists)
await orchestrator.DropStoredProcedureAsync (productSetupTable,
DbStoredProcedureType.SelectChanges) ;

2.5 Progression

Getting useful information during a sync process could be complex.
You can have a lot of information from an in-going sync, through two kinds of things:

22 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

e TProgress<ProgressArgs> : A best practice using [Progress<T> to handle progress from within an

awaitable method.

» Interceptor<T>: A more advanced technic to handle a lot of more events from within DMS

2.5.1 Overview

During a full synchronization, we have two distincts type of progression:
* The Progression from the client side.
* The Progression from the server side.
We have a lot of progress values raised from both the server and the client side:

 Each progress value is catched at the end of a method called by the Orchestrator instance.

» Each progress value in a sync process corresponds to a specific stage, represented by a SyncStage enumera-

tion.

public enum SyncStage
{

None = 0,

BeginSession,
EndSession,

Scopeloading,
ScopeWriting,

SnapshotCreating,
SnapshotApplying,

SchemaReading,

Provisioning,
Deprovisioning,

ChangesSelecting,
ChangesApplying,

Migrating,

MetadataCleaning,

To explain how things work, we are starting from a really straightforward sync process example, using the sample

from Hello sync sample:

var serverProvider = new SglSyncChangeTrackingProvider (serverConnectionString);

var clientProvider = new SglSyncProvider (clientConnectionString);

var setup = new SyncSetup ("ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader",
"SalesOrderDetail");

var agent = new SyncAgent (clientProvider, serverProvider);
do

(continues on next page)

2.5. Progression

23

https://docs.microsoft.com/en-us/dotnet/api/system.progress-1
https://github.com/Mimetis/Dotmim.Sync/blob/master/Samples/HelloSync

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// Launch the sync process

var sl = await agent.SynchronizeAsync (setup);
// Write results

Console.WriteLine(sl);

} while (Console.ReadKey () .Key != ConsoleKey.Escape);

Console.WriteLine ("End");

We are going to see how to get useful information, from each stage involved during the sync processus, thanks to
IProgress<T> and then we will go deeper with the notion of Interceptor<T>.

Note: You will find this complete sample here : Progression sample

2.5.2 IProgress<T>

As we said, the progress values are triggered from both side : Server side and Client side, ordered.
In our sample, we can say that :

* The RemoteOrchestrator instance, using the server provider instance, will report all the progress from the
server side.

e The LocalOrchestrator instance using the client provider instance, will report all the progress from the
client side.

Note: A syncAgent object is always running on the client side of any architecture.

Since our main method SynchronizeAsync () is marked async method, we will use the Progress<T> to be able
to report progress value.

So far, the most straightforward way to get feedback from a current sync, is to pass an instance of IProgress<T>
when calling the method SynchronizeAsync ().

Note: Progress<T> is not synchronous. So far, no guarantee that the progress callbacks will be raised in an
ordered way.

That’s why you can use a DMS progess class called SynchronousProgress<T> which is synchronous, using the
correct synchronization context.

Here is a quick example used to provide some feedback to the user:

var serverProvider = new SglSyncChangeTrackingProvider (serverConnectionString);
var clientProvider = new SglSyncProvider (clientConnectionString);

// Tables involved in the sync process:
var setup = new SyncSetup ("ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader", "SalesOrderDetail"

=)

// Creating an agent that will handle all the process
var agent = new SyncAgent (clientProvider, serverProvider);

(continues on next page)

24 Chapter 2. Need Help

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/Progression
https://docs.microsoft.com/en-us/dotnet/api/system.progress-1?view=netcore-2.2

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// Using the IProgress<T> pattern to handle progession dring the synchronization
var progress = new SynchronousProgress<ProgressArgs> (args =>

Console.WriteLine ($"{s.ProgressPercentage:p}: \t[{s.Source[..Math.Min (4, s.
—Source.Length)]}] {s.TypeName}: {s.Message}l"));

do
{
// Launch the sync process
var sl = await agent.SynchronizeAsync (setup, progress);
// Write results
Console.WriteLine (sl);
} while (Console.ReadKey () .Key != ConsoleKey.Escape);

Console.WriteLine ("End");

Here is the result, after the first synchronization, assuming the Client database is empty:

0,00 %: [Clie] ProvisionedArgs: Provisioned 9 Tables. Provision:Table,
—TrackingTable, StoredProcedures, Triggers.

55,00 %: [Adve] TableChangesSelectedArgs: [SalesOrderHeader] [Totall],
—Upserts:32. Deletes:0. Total:32.

75,00 %: [Adve] TableChangesSelectedArgs: [Address] [Total] Upserts:450.
—Deletes:0. Total:450.

75,00 %: [Adve] TableChangesSelectedArgs: [SalesOrderDetail] [Total],
—Upserts:542. Deletes:0. Total:542.

75,00 %: [Adve] TableChangesSelectedArgs: [ProductCategory] [Total] Upserts:41.
— Deletes:0. Total:41.

75,00 %: [Adve] TableChangesSelectedArgs: [ProductModel] [Total] Upserts:128.
—Deletes:0. Total:128.

75,00 %: [Adve] TableChangesSelectedArgs: [CustomerAddress] [Totall],
—Upserts:417. Deletes:0. Total:417.

75,00 %: [Adve] TableChangesSelectedArgs: [ProductDescription] [Totall],
—Upserts:762. Deletes:0. Total:762.

75,00 %: [Adve] TableChangesSelectedArgs: [Product] [Total] Upserts:295.
—Deletes:0. Total:295.

75,00 %: [Adve] TableChangesSelectedArgs: [Customer] [Total] Upserts:847.
—Deletes:0. Total:847.

75,00 %: [Adve] DatabaseChangesSelectedArgs: [Total] Upserts:3514. Deletes:0.
—Total:3514. [C:\Temp\DotmimSync\2022_07_17_12iksl2xfjrzx]

80,42 %: [Clie] TableChangesAppliedArgs: [ProductDescription] Changes Modified
—Applied:762. Resolved Conflicts:O0.

80,71 %: [Clie] TableChangesAppliedArgs: [ProductCategory] Changes Modified
—Applied:41. Resolved Conflicts:O0.

81,62 %: [Clie] TableChangesAppliedArgs: [ProductModel] Changes Modified,
—Applied:128. Resolved Conflicts:0.

83,72 %: [Clie] TableChangesAppliedArgs: [Product] Changes Modified,
—Applied:295. Resolved Conflicts:O0.

86,92 %: [Clie] TableChangesAppliedArgs: [Address] Changes Modified

—Applied:450. Resolved Conflicts:O0.

92,95 [Clie] TableChangesAppliedArgs: [Customer] Changes Modified
—Applied:847. Resolved Conflicts:0.

95,92 [Clie] TableChangesAppliedArgs: [CustomerAddress] Changes Modified
—Applied:417. Resolved Conflicts:0.

96,14 %: [Clie] TableChangesAppliedArgs: [SalesOrderHeader] Changes Modified
—Applied:32. Resolved Conflicts:O0.

oe

oe

(continues on next page)

2.5. Progression 25

Dotmim.Sync, Release 0.9.5

(continued from previous page)

100,00 %: [Clie] TableChangesAppliedArgs: [SalesOrderDetail] Changes Modified
—Applied:542. Resolved Conflicts:O0.

100,00 %: [Clie] DatabaseChangesAppliedArgs: [Total] Applied:3514. Conflicts:O0.
100,00 %: [Clie] SessionEndArgs: [Client] Session Ends. Id:3b69c8ab-cce8-4b94-

—pbf75-db22ea43169d. Scope name:DefaultScope.
Synchronization done.

Total changes uploaded: 0

Total changes downloaded: 3514

Total changes applied: 3514

Total resolved conflicts: 0

Total duration :00.00:02.042
Sync Ended. Press a key to start again, or Escapte to end

As you can see, it’s a first synchronization, so:
* Session begins
* Server creates all metadatas needed for AdventureWorks database
* Client creates all metadatas needed for Client database
 Server selects all changes to upserts
* Client applies all changes sent from ths server
* Client selects changes to send (nothing, obviously, because the tables have just been created on the client)
* Session ends
You can have more information, depending on your need, and still based on IProgress<T>.

Using a SyncProgressLevel enumeration affected to the ProgressLevel property of your SyncOptions instance:

public enum SyncProgressLevel
{

/// <summary>

/// Progress that contain the most detailed messages and the Sqgl statement,,
—executed

/// </summary>

Sql,

/// <summary>

/// Progress that contain the most detailed messages. These messages may contain_,
—sensitive application data

/// </summary>

Trace,

/// <summary>

/// Progress that are used for interactive investigation during development
/// </summary>

Debug,

/// <summary>

/// Progress that track the general flow of the application.
/// </summary>

Information,

/// <summary>
/// Specifies that a progress output should not write any messages.
/// </summary>

(continues on next page)

26 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

None

Warning: Be careful: The Sql level may contains sensitive data !

var syncOptions = new SyncOptions

{

ProgressLevel = SyncProgressLevel.Debug

}i

// Creating an agent that will handle all the process
var agent = new SyncAgent (clientProvider, serverProvider, syncOptions);

var progress = new SynchronousProgress<ProgressArgs> (s =>
{
Console.WriteLine ($"{s.ProgressPercentage:p}: \t[{s.Source[..Math.Min (4, s.
—Source.Length)]}] {s.TypeName}: {s.Message}");
1)

var s = await agent.SynchronizeAsync (setup, SyncType.Reinitialize, progress);
Console.WritelLine (s);

And the details result with a SyncProgressLevel.Debug flag:

0,00 %: [Clie] SessionBeginArgs: [Client] Session Begins. Id:f62adec4-2la7-
—4a35-b86e-d3d7d52bc590. Scope name:DefaultScope.

0,00 %: [Clie] ClientScopeInfoloadingArgs: [Client] Client Scope Table
—Loading.

0,00 %: [Clie] ClientScopeInfoloadedArgs: [Client] [DefaultScope] [Version O.
—9.5] Last sync:17/07/2022 20:06:57 Last sync duration:0:0:2.172.

0,00 %: [Adve] ServerScopelInfolLoadingArgs: [AdventureWorks] Server Scope,,
—Table Loading.

0,00 %: [Adve] ServerScopelInfoloadedArgs: [AdventureWorks] [DefaultScope],

— [Version 0.9.5] Last cleanup timestamp:O0.

0,00 %: [Adve] OperationArgs: Client Operation returned by server.

10,00 %: [Clie] LocalTimestampLoadingArgs: [Client] Getting Local Timestamp.
10,00 %: [Clie] LocalTimestampLoadedArgs: [Client] Local Timestamp,,
—Loaded:17055.

30,00 %: [Adve] ServerScopelInfoloadingArgs: [AdventureWorks] Server Scope,,
—~Table Loading.

30,00 %: [Adve] ServerScopelInfoloadedArgs: [AdventureWorks] [DefaultScope],

— [Version 0.9.5] Last cleanup timestamp:0.

30,00 %: [Adve] DatabaseChangesApplyingArgs: Applying Changes. Total Changes,_
—To Apply: O

30,00 %: [Adve] DatabaseChangesAppliedArgs: [Total] Applied:0. Conflicts:0.
55,00 %: [Adve] LocalTimestampLoadingArgs: [AdventureWorks] Getting Local,,
—Timestamp.

55,00 %: [Adve] LocalTimestampLlLoadedArgs: [AdventureWorks] Local Timestamp,
—Loaded:2000.

55,00 %: [Adve] DatabaseChangesSelectingArgs: [AdventureWorks] Getting Changes.

— [C:\Users\spertus\AppData\Local\Temp\DotmimSync]. Batch size:5000. IsNew:True.

55,00 %: [Adve] TableChangesSelectingArgs: [Customer] Getting Changes.
55,00 %: [Adve] TableChangesSelectingArgs: [Address] Getting Changes.
55,00 %: [Adve] TableChangesSelectingArgs: [SalesOrderDetail] Getting Changes.

(continues on next page)

2.5. Progression 27

Dotmim.Sync, Release 0.9.5

(continued from previous page)

55,00 %: [Adve] TableChangesSelectingArgs: [Product] Getting Changes.

55,00 %: [Adve] TableChangesSelectingArgs: [ProductCategory] Getting Changes.
55,00 %: [Adve] TableChangesSelectingArgs: [ProductModel] Getting Changes.
55,00 %: [Adve] TableChangesSelectingArgs: [SalesOrderHeader] Getting Changes.
55,00 %: [Adve] TableChangesSelectingArgs: [CustomerAddress] Getting Changes.
55,00 %: [Adve] TableChangesSelectingArgs: [ProductDescription] Getting,,
—Changes.

55,00 %: [Adve] TableChangesSelectedArgs: [ProductCategory] [Total] Upserts:41.
— Deletes:0. Total:41.

75,00 %: [Adve] TableChangesSelectedArgs: [SalesOrderHeader] [Total]
—Upserts:32. Deletes:0. Total:32.

75,00 %: [Adve] TableChangesSelectedArgs: [ProductModel] [Total] Upserts:128.
—Deletes:0. Total:128.

75,00 %: [Adve] TableChangesSelectedArgs: [Address] [Total] Upserts:450.
—Deletes:0. Total:450.

75,00 %: [Adve] TableChangesSelectedArgs: [CustomerAddress] [Totall,
—Upserts:417. Deletes:0. Total:417.

75,00 %: [Adve] TableChangesSelectedArgs: [SalesOrderDetail] [Totall]
—Upserts:542. Deletes:0. Total:542.

75,00 %: [Adve] TableChangesSelectedArgs: [ProductDescription] [Total],
—Upserts:762. Deletes:0. Total:762.

75,00 %: [Adve] TableChangesSelectedArgs: [Product] [Total] Upserts:295.
—Deletes:0. Total:295.

75,00 %: [Adve] TableChangesSelectedArgs: [Customer] [Total] Upserts:847.
—Deletes:0. Total:847.

75,00 %: [Adve] DatabaseChangesSelectedArgs: [Total] Upserts:3514. Deletes:0.

—Total:3514. [C:\Users\spertus\AppData\Local\Temp\DotmimSync\2022_07_17_
—00fbihwicdjll]

75,00 %: [Adve] ScopeSavingArgs: [AdventureWorks] Scope Table [ServerHistory],
—Saving.

75,00 %: [Adve] ScopeSavedArgs: [AdventureWorks] Scope Table [ServerHistory],
—Saved.

75,00 %: [Clie] DatabaseChangesApplyingArgs: Applying Changes. Total Changes,,
—To Apply: 3514

75,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To
—ProductDescription.

75,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying,

— [ProductDescription] batch rows. State:Modified. Count:762

80,42 %: [Clie] TableChangesBatchAppliedArgs: [ProductDescription] [Modified] |
—Applied: (762) Total: (762/3514).

80,42 %: [Clie] TableChangesAppliedArgs: [ProductDescription] Changes Modified

—Applied:762. Resolved Conflicts:O0.

80,42 %: [Clie] TableChangesApplyingArgs: Applying Changes To ProductCategory.
80,42 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [ProductCategory],
—batch rows. State:Modified. Count:41

80,71 %: [Clie] TableChangesBatchAppliedArgs: [ProductCategory] [Modified]
—Applied: (41) Total: (803/3514).

80,71 %: [Clie] TableChangesAppliedArgs: [ProductCategory] Changes Modified

—Applied:41. Resolved Conflicts:O0.

80,71 %: [Clie] TableChangesApplyingArgs: Applying Changes To ProductModel.
80,71 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [ProductModel] |,
—batch rows. State:Modified. Count:128

81,62 %: [Clie] TableChangesBatchAppliedArgs: [ProductModel] [Modified],
—Applied: (128) Total: (931/3514).

81,62 %: [Clie] TableChangesAppliedArgs: [ProductModel] Changes Modified
—Applied:128. Resolved Conflicts:0.

81,62 %: [Clie] TableChangesApplyingArgs: Applying Changes To Product.

(continues on next page)

28 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

o .
R

81,62
< YOWS.
83,72
—Applied: (295)
83,72 %:

—Applied:295.

o .
5

[Clie] TableChangesApplyingSyncRowsArgs: Applying [Product] batch

State:Modified. Count:295

[Clie] TableChangesBatchAppliedArgs: [Product] [Modified]
Total: (1226/3514) .
[Clie] TableChangesAppliedArgs: [Product] Changes Modified

Resolved Conflicts:0.

83,72 %: [Clie] TableChangesApplyingArgs: Applying Changes To Address.
83,72 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [Address] batch,,
—rows. State:Modified. Count:450

86,92 %: [Clie] TableChangesBatchAppliedArgs: [Address] [Modified]

—Applied: (450)
86,92
—Applied:450.
86,92
86,92
< TOWS.
92,95
—Applied: (847)
92,95
—Applied:847.

o .
5

oe

o\

oe

oe

Total: (1676/3514) .

[Clie] TableChangesAppliedArgs:
Resolved Conflicts:0.

[Clie] TableChangesApplyingArgs: Applying Changes To Customer.

[Clie] TableChangesApplyingSyncRowsArgs: Applying [Customer] batch,

[Address] Changes Modified,,

State:Modified. Count:847

[Clie] TableChangesBatchAppliedArgs: [Customer] [Modified],
Total: (2523/3514) .
[Clie] TableChangesAppliedArgs: [Customer] Changes Modified

Resolved Conflicts:0.

92,95 %: [Clie] TableChangesApplyingArgs: Applying Changes To CustomerAddress.
92,95 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [CustomerAddress],
—batch rows. State:Modified. Count:417

95,92 %: [Clie] TableChangesBatchAppliedArgs: [CustomerAddress] [Modified],
—Applied: (417) Total: (2940/3514).

95,92 %: [Clie] TableChangesAppliedArgs: [CustomerAddress] Changes Modified

—Applied:417.

Resolved Conflicts:0.

95,92 %: [Clie] TableChangesApplyingArgs: Applying Changes To SalesOrderHeader.
95,92 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [SalesOrderHeader]
—batch rows. State:Modified. Count:32

96,14 %: [Clie] TableChangesBatchAppliedArgs: [SalesOrderHeader] [Modified]

—Applied: (32)
96,14
—Applied:32.
96,14
96,14
—batch rows.
100,00 %:

—Applied: (542)
100,00
—Applied:542.

)
N

o\°

o

RS

)

o .
e

Total: (2972/3514) .

[Clie] TableChangesAppliedArgs: [SalesOrderHeader] Changes Modified,,

Resolved Conflicts:0.

[Clie]
[Clie]

TableChangesApplyingArgs: Applying Changes To SalesOrderDetail.
TableChangesApplyingSyncRowsArgs: Applying [SalesOrderDetaill] |

State:Modified. Count:542

[Clie] TableChangesBatchAppliedArgs: [SalesOrderDetail] [Modified]
Total: (3514/3514).
[Clie] TableChangesAppliedArgs: [SalesOrderDetail] Changes Modified

Resolved Conflicts:0.

100,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To SalesOrderDetail.
100,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [SalesOrderDetaill]
—batch rows. State:Deleted. Count:0

100,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To SalesOrderHeader.
100,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [SalesOrderHeader]
—batch rows. State:Deleted. Count:0

100,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To CustomerAddress.
100,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [CustomerAddress],
—batch rows. State:Deleted. Count:0

100,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To Customer.

100,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [Customer] batch_,
—rows. State:Deleted. Count:0

100,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To Address.

100,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [Address] batch,,
—rows. State:Deleted. Count:0

100,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To Product.

(continues on next page)

2.5. Progression

29

Dotmim.Sync, Release 0.9.5

(continued from previous page)

100,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [Product] batch
—rows. State:Deleted. Count:0

100,00 [Clie] TableChangesApplyingArgs: Applying Changes To ProductModel.
100,00 [Clie] TableChangesApplyingSyncRowsArgs: Applying [ProductModel] |

—batch rows. State:Deleted. Count:0

o° o

100,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To ProductCategory.
100,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying [ProductCategory]
—batch rows. State:Deleted. Count:0

100,00 %: [Clie] TableChangesApplyingArgs: Applying Changes To,,
—ProductDescription.

100,00 %: [Clie] TableChangesApplyingSyncRowsArgs: Applying

— [ProductDescription] batch rows. State:Deleted. Count:0

100,00 %: [Clie] DatabaseChangesAppliedArgs: [Total] Applied:3514. Conflicts:O0.
100,00 %: [Clie] ClientScopeInfolLoadingArgs: [Client] Client Scope Table,
—Loading.

100,00 %: [Clie] ClientScopeInfoloadedArgs: [Client] [DefaultScope] [Version O.

—9.5] Last sync:17/07/2022 20:06:57 Last sync duration:0:0:2.172.

100,00 %: [Clie] MetadataCleaningArgs: Cleaning Metadatas.

100,00 %: [Clie] MetadataCleanedArgs: Tables Cleaned:0. Rows Cleaned:O0.

100,00 %: [Clie] ScopeSavingArgs: [Client] Scope Table [Client] Saving.

100,00 %: [Clie] ScopeSavedArgs: [Client] Scope Table [Client] Saved.

100,00 %: [Clie] SessionEndArgs: [Client] Session Ends. Id:f62adec4-21a7-4a35-
S

—b86e-d3d7d52bc590.
Synchronization done.
Total changes uploaded: 0
Total changes downloaded: 3514
Total changes applied: 3514
Total resolved conflicts: 0
Total duration :00.00:00.509
Sync Ended. Press a key to start again, or Escapte to end

cope name:DefaultScope.

2.6 Interceptors

Interceptor<T>: A more advanced technic to handle a lot of more events from within DMS

2.6.1 Overview

The Progress<T> stuff is great, but as we said, it’s mainly read only, and the progress is always reported at the end
of a current sync stage.

So, if you need a more granular control on all the progress values, you can subscribe to an Interceptor<T>.

On each orchestrator, you will find a lot of relevant methods to intercept the sync process, encapsulate in a fancy
OnMethodAsync () method:

30 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

.orchestrator.on|_
On
G}, OnApplyChangesFailed -
G} OnConnectionClose
@ OnConnectionOpen (extension)} void [Orchestrator.OnConnectionOpen(Func<ConnectionOpenArgs, Task> f
G}, OnDatabaseChangesApplied
G}, OnDatabaseChangesApplying
G, OnDatabaseDeprovisioned
G}, OnDatabaseDeprovisioning
@; OnDatabaseProvisioned
G, OnDatabaseProvisioning A

i @ @ B3

Imagine you have a table that should never be synchronized on one particular client (and is part of your SyncSetup).
You’re able to use an interceptor like this:

// We are using a cancellation token that will be passed as an argument
// to the SynchronizeAsync () method !
var cts = new CancellationTokenSource();

agent .LocalOrchestrator.OnTableChangesApplying((args) =>
{
if (args.SchemaTable.TableName == "Table_That_Should_ Not_Be_Sync")
args.Cancel = true;

)i

Be careful, your table will never be synced !

2.6.2 Intercepting rows

You may want to intercept all the rows that have just been selected from the source (client or server), and are about to
be sent to their destination (server or client).

Or even intercept all the rows that are going to be applied on a destination database.
That way, you may be able to modify these rows, to meet your business / requirements rules.

Hint: You will find the sample used for this chapter, here : Spy sample.

DMS workload allows you to intecept different kinds of events on different levels:
* Database level
 Table level
* Row level
On each side (client and server), you will have:
* Interceptors during the “_Select_”" phase : Getting changes from the database.
¢ Interceptors during the “_Apply_" phase : Applying Insert / Delete or Update to the database.
* Interceptors for extra workloads like conflict resolution, serialization, converters & so on ...

On each level you will have:

2.6. Interceptors 31

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/Spy

Dotmim.Sync, Release 0.9.5

* A before event: Generally ending by “_ing_" like OnDatabaseChangesApplying.

* An after event: Generally ending by “_ied_" like OnDatabaseChangesApplied.

Selecting changes

Regarding the rows selection from your client or server:

* OnDatabaseChangesSelecting : Raised before selecting rows. You have info about the tmp folder and
batch size that will be used.

* OnTableChangesSelecting : Raised before selecting rows for a particular table : You have info about
the current table and the DbCommand used to fetch data.

On the other side, once rows are selected, you still can:
* OnRowsChangesSelected : Raised once a row is read from the databse, but not yet serialized to disk.

* OnTableChangesSelected : Raised once a table changes as been fully read. Changes are serialized to
disk.

* OnDatabaseChangesSelected : Raised once all changes are grabbed from the local database. Changes
are serialized to disk.

Applying changes

Regarding the rows to apply on your client (or server) database, you can intercept different kind of events:

* OnDatabaseChangesApplying: Rows are serialized locally in a batch info folder BUT they are not yet
read internally and are not in memory. You can iterate over all the files and see if you have rows to apply.

* OnTableChangesApplying: Rows are still on disk and not in memory. This interceptor is called for each
table that has rows to apply.

* OnRowsChangesApplying : Rows ARE now in memory, in a batch (depending on batch size and provider
max batch), and are going to be applied.

On the other side, once rows are applied, you can iterate through different interceptors:

* OnTableChangesApplied: Contains a summary of all rows applied on a table for a particular state
(DataRowState.Modified or Deleted).

* OnDatabaseChangesApplied : Contains a summary of all changes applied on the database level.
Here are some useful information about some of these interceptors:

OnDatabaseChangesSelecting

The OnDatabaseChangesSelecting occurs before the database will get changes from the database.

localOrchestrator.OnDatabaseChangesSelecting (args =>

{

Console.WriteLine($"-— """ ")
Console.WriteLine ($"Getting changes from local database:");
Console.WritelLine ($"-————————————————————————————— - ")

Console.WriteLine ($"BatchDirectory: {args.BatchDirectory}. BatchSize: {args.
—BatchSize}.");
}) i

32 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

BatchDirectory: C:\Users\spertus\AppData\Local\Temp\DotmimSync\2022_07_18_
—36tygabvdij2bw.
BatchSize: 2000.

OnDatabaseChangesApplying

The OnDatabaseChangesApplying interceptor is happening when changes are going to be applied on the
client or server.

The changes are not yet loaded in memory. They are all stored locally in a temporary folder.

To be able to load batches from the temporary folder, or save rows, you can use the
LoadTableFromBatchInfoAsync and SaveTableToBatchPartInfoAsync methods

localOrchestrator.OnDatabaseChangesApplying (async args =>
{

Console.WritelLine ($"————————————————————————————————— ")
Console.WriteLine ($"Changes to be applied on the local database:");
Console.WritelLine ($"—— ")

foreach (var table in args.ApplyChanges.Schema.Tables)
{
// loading in memory all batches containing rows for the current table
var syncTable = await localOrchestrator.LoadTableFromBatchInfoAsync (
args.ApplyChanges.BatchInfo, table.TableName, table.SchemaName) ;

Console.WritelLine ($"Changes for table {table.TableName}. Rows:{syncTable.Rows.
—Count}");
foreach (var row in syncTable.Rows)
Console.WritelLine (row) ;

Console.WriteLine();

Changes for table ProductCategory. Rows:1

[Sync state] :Modified, [ProductCategoryID]:e7224bd1-192d-4237-8dc6-a3c21a017745,
[ParentProductCategoryID] :<NULL />

Changes for table ProductModel. Rows:0

Changes for table Product. Rows:0

Changes for table Address. Rows:0

Changes for table Customer. Rows:1

[Sync state]:Modified, [CustomerID]:30125, [NameStyle]:False, [Title]:<NULL />,
[FirstName] :John, [MiddleName] :<NULL />

(continues on next page)

2.6. Interceptors 33

Dotmim.Sync, Release 0.9.5

(continued from previous page)

Changes for table CustomerAddress. Rows:0
Changes for table SalesOrderHeader. Rows:0

Changes for table SalesOrderDetail. Rows:0

OnTableChangesApplying

The OnTableChangesApplying is happening right before rows are applied on the client or server.

Like OnDatabaseChangesApplying the changes are not yet loaded in memory. They are all stored locally in a
temporary folder.

Be careful, this interceptor is called for each state (Modified / Deleted), so be sure to check the state of the rows:
Note that this interceptor is not called if the current tables has no rows to applied.

// Just before applying changes locally, at the table level
localOrchestrator.OnTableChangesApplying (async args =>
{

if (args.BatchPartInfos != null)

{

var syncTable = await localOrchestrator.LoadTableFromBatchInfoAsync (
args.BatchInfo, args.SchemaTable.TableName, args.SchemaTable.SchemaName,

—args.State);

if (syncTable != null && syncTable.HasRows)
{
Console.WritelLine($"- - ------------- - - - - - - - - - - - - ———(—(—(—(—(——(——(—(—(—(——— ")
Console.WriteLine ($"- Applying [{args.State}]
changes to Table {args.SchemaTable.GetFullName()}");
Console.WritelLine ($"Changes for table
{args.SchemaTable.TableName}. Rows:{syncTable.Rows.Count}");
foreach (var row in syncTable.Rows)
Console.WriteLine (row) ;

- Applying [Modified] changes to Table ProductCategory

Changes for table ProductCategory. Rows:1

[Sync state] :Modified, [ProductCategoryID]:e7224bdl1-192d-4237-8dc6-a3c21a017745,
[ParentProductCategoryID] :<NULL />

- Applying [Modified] changes to Table Customer

Changes for table Customer. Rows:1

[Sync state] :Modified, [CustomerID]:30125, [NameStyle]:False, [Title] :<NULL />,

— [FirstName] : John,

[MiddleName] : <NULL />, [LastName]:Doe, [Suffix]:<NULL />, [CompanyName]:<NULL />,
< [SalesPerson] :<NULL />,

34 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

OnRowsChangesApplying
The OnRowsChangesApplying interceptor is happening just before applying a batch of rows to the local (client
or server) database.
The number of rows to be applied here is depending on:
* The batch size you have set in your SyncOptions instance : SyncOptions.BatchSize (Defaultis 2 Mo)

* The max number of rows to applied in one single instruction : Provider.BulkBatchMaxLinesCount
(Default is 10 000 rows per instruction)

localOrchestrator.OnRowsChangesApplying (async args =>
{
Console.Writeline($"- - —————————————— "y
Console.WriteLine ($"- In memory rows that are going to be Applied");
foreach (var row in args.SyncRows)
Console.WritelLine (row) ;

Console.WriteLine () ;

- In memory rows that are going to be Applied
[Sync state] :Modified, [ProductCategoryID]:275c44e0-cfc7-..,_
— [ParentProductCategoryID] :<NULL />

- In memory rows that are going to be Applied
[Sync state] :Modified, [CustomerID]:30130, [NameStyle]:False, [Title] :<NULL />,
— [FirstName] : John

2.6.3 Interceptors DbCommand execution

Interceptors on DbCommand will let you change the command used, depending on your requirements:
* Interceptors on creating the architecture.
* Interceptors when executing sync queries.

Let see a straightforward sample : Customizing a tracking table.

Adding a new column in a tracking table

The idea here is to add a new column internal_id in the tracking table:

var provider = new SglSyncProvider (serverConnectionString);

var options = new SyncOptions{();

var setup = new SyncSetup (new string[] { "ProductCategory", "ProductModel", "Product"
1)

var orchestrator = new RemoteOrchestrator (provider, options, setup);

// working on the product Table
var productSetupTable = setup.Tables["Product"];

orchestrator.OnTrackingTableCreating(ttca =>

(continues on next page)

2.6. Interceptors 35

Dotmim.Sync, Release 0.9.5

(continued from previous page)

var addingID = '$'" ALTER TABLE {ttca.TrackingTableName.Schema ().Quoted()} " +
'$'" ADD internal_id varchar (10) null";
ttca.Command.CommandText += addingID;

1)

var trExists = await orchestrator.ExistTrackingTableAsync (productSetupTable);
if (!trExists)
await orchestrator.CreateTrackingTableAsync (productSetupTable);

36 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

= g AdventureWorks
Database Diagrarns
=] Tables

Systermn Tables

FileTables

External Tables

AR dbo.Address

AR dbo.BuildVersion

A dbo.Customer

A dbo.Customerfddress

BR dbo.Errorlog

AR dbo.Product

B o0 o Product tscking

=] Columns

m@ ProductlD (PE, int, not null)
E update_scope_id {unigqueidentifier, null}
H timestamp (timestamp, null)
3 timestamp_bigint (Computed, bigint, null)
E sync_row_is_tombstone (bit, not null)
E last_change_datetirne (datetime, null)
E internal_id (varchar(10), null)

Keys
Constraints
Triggers
Indexes
Statistics

e dbo.ProductCategory

ER dbo.ProductDescription

FH dbo.ProductModel

B dbo.ProductModelProductDescription
FH dbo.SalesCrderDetail

FH dbo.SalesOrderHeader

Ok, now we need to customize the triggers to insert a correct value in the internal_id column:

orchestrator.OnTriggerCreating(tca =>

{

(continues on next page)

2.6. Interceptors 37

Dotmim.Sync, Release 0.9.5

(continued from previous page)

string val;

if (tca.TriggerType == DbTriggerType.Insert)

val = "INS";
else if (tca.TriggerType == DbTriggerType.Delete)

val = "DEL";
else

val = "UPD";
var cmdText = '$'"UPDATE Product_tracking " +

'$'""SET Product_tracking.internal_id='{val}' " +

'$'"FROM Product_tracking JOIN Inserted ON " +
'$'""Product_tracking.ProductID = Inserted.ProductID;";

tca.Command.CommandText += Environment.NewLine + cmdText;

)i

var trgExists = await orchestrator.ExistTriggerAsync (productSetupTable,
DbTriggerType.Insert) ;
if (!trgExists)
await orchestrator.CreateTriggerAsync (productSetupTable,
DbTriggerType.Insert);

trgExists = await orchestrator.ExistTriggerAsync (productSetupTable,
DbTriggerType.Update) ;
if (!trgExists)
await orchestrator.CreateTriggerAsync (productSetupTable,
DbTriggerType.Update) ;

trgExists = await orchestrator.ExistTriggerAsync (productSetupTable,
DbTriggerType.Delete);
if (!trgExists)
await orchestrator.CreateTriggerAsync (productSetupTable,
DbTriggerType.Delete);

orchestrator.OnTriggerCreating (null) ;

Here is the Sql script executed for trigger Insert:

CREATE TRIGGER [dbo].[Product_insert_trigger] ON [dbo].[Product] FOR INSERT AS
SET NOCOUNT ON;

-— If row was deleted before, it already exists, so just make an update
UPDATE [side]

SET [sync_row_is_tombstone] = 0
, [update_scope_id] = NULL -- scope id is always NULL when update is made locally
, [last_change_datetime] = GetUtcDate ()

FROM [Product_tracking] [side]

JOIN INSERTED AS [i] ON [side].[ProductID] = [i].[ProductID]

INSERT INTO [Product_tracking] (
[ProductID]
, [update_scope_id]
, [sync_row_is_tombstone]
, [last_change_datetime]
)
SELECT

(continues on next page)

38 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

[i].[ProductID]

, NULL

, 0

, GetUtcDate ()
FROM INSERTED [1i]
LEFT JOIN [Product_tracking] [side] ON [i].[ProductID] = [side].[ProductID]
WHERE [side].[ProductID] IS NULL

UPDATE Product_tracking SET Product_tracking.internal_ id='INS'
FROM Product_tracking
JOIN Inserted ON Product_tracking.ProductID = Inserted.ProductID;

2.6.4 Intercepting web events

Some interceptors are specific to web orchestrators WebRemoteOrchestrator & WebServerAgent.

These orchestrators will let you intercept all the Request s and Responses that will be generated by DMS during a
web call.

WebServerAgent

The two first interceptors will intercept basically all requests and responses coming in and out:
* webServerAgent .OnHttpGettingRequest (args => {})
* webServerAgent .OnHttpSendingResponse (args => {})

Each of them will let you access the HttpContext, SyncContext and SessionCache instances:

webServerAgent .OnHttpGettingRequest (args =>
{

var httpContext = args.HttpContext;

var syncContext = args.Context;

var session = args.SessionCache;

)i

The two last new web server http interceptors will let you intercept all the calls made when server receives client
changes and when server sends back server changes.

* webServerAgent .OnHttpGettingChanges (args => {});
* webServerAgent.OnHttpSendingChanges (args => {});

Here is a quick example using all of them:

webServerAgent .OnHttpGettingRequest (req =>
Console.WritelLine ("Receiving Client Request:" + req.Context.SyncStage +
". " 4+ reqg.HttpContext.Request.Host.Host + "."));

webServerAgent .OnHttpSendingResponse (res =>
Console.WritelLine ("Sending Client Response:" + res.Context.SyncStage +
". " 4+ res.HttpContext.Request.Host.Host));

webServerAgent .OnHttpGettingChanges (args
=> Console.Writeline ("Getting Client Changes" + args));

(continues on next page)

2.6. Interceptors 39

Dotmim.Sync, Release 0.9.5

(continued from previous page)

webServerAgent .OnHttpSendingChanges (args

=> Console.WriteLine ("Sending Server Changes"

await webServerManager.HandleRequestAsync (context) ;

+ args));

Receiving Client Request:Scopeloading.
Sending Client Response:Provisioning.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Getting Client Changes|[localhost] Getting
Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.

Receiving Client Request:ChangesSelecting.

Sending Server Changes|[localhost] Sending
Sending Client Response:ChangesSelecting.
Synchronization done.

localhost.
localhost

localhost.

All Snapshot Changes.

localhost
localhost.
All Changes.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost
localhost.
Batch Changes.
localhost

Rows: 0
(1/11).

(2/11) .

(3/11) .

(4/11) .

(5/11) .

(6/11) .

(7/11) .

(8/11) .

(9/11) .

(10/11) .

(11/11) .

Rows: 0

Rows:658

Rows:321

Rows:29

33

Rows:

39

Rows:

55

Rows:

49

Rows:

:32

Rows

Rows:758

Rows:298

Rows:1242

The main differences are that the two first ones will intercept ALL requests coming from the client and the two last

one will intercept Only requests where data are exchanged (but you have more detailed)

WebRemoteOrchestrator

You have pretty much the same Http interceptors on the client side.
OnHttpSendingRequest and OnHttpSendingResponse becomes OnHttpGettingResponse:

OnHttpGettingRequest becomes

40

Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

localOrchestrator.OnHttpGettingResponse (req => Console.WritelLine ("Receiving Server
—Response")) ;

localOrchestrator.OnHttpSendingRequest (res =>Console.WritelLine ("Sending Client
—Request."));

localOrchestrator.OnHttpGettingChanges (args => Console.WritelLine ("Getting Server
—Changes" + args));

localOrchestrator.OnHttpSendingChanges (args => Console.WritelLine ("Sending Client
—Changes" + args));

Sending Client Request.

Receiving Server Response

Sending Client Request.

Receiving Server Response

Sending Client Changes[localhost] Sending All Changes. Rows:0

Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (1/11). Rows:658
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (2/11). Rows:321
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (3/11). Rows:29
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (4/11). Rows:33
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (5/11). Rows:39
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (6/11). Rows:55
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (7/11). Rows:49
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (8/11). Rows:32
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (9/11). Rows:758
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (10/11). Rows:298
Sending Client Request.

Receiving Server Response

Getting Server Changes[localhost] Getting Batch Changes. (11/11). Rows:1242
Synchronization done.

2.6.5 Example: Hook Bearer token
The idea is to inject the user identifier UserId in the SyncParameters collection on the server, after having
extract this value from a Bearer token.

That way the UserId is not hard coded or store somewhere on the client application, since this value is generated
during the authentication part.

2.6. Interceptors a

Dotmim.Sync, Release 0.9.5

As you can see:
* My SyncController is marked with the [Authorize] attribute.
* The orchestrator is only called when we know that the user is authenticated.
* We are injecting the UserId value coming from the bearer into the SyncContext .Parameters.

* Optionally, because we don’t want to send back this value to the client, we are removing it when sending the
response.

[Authorize]

[ApiController]

[Route ("api/[controller]")]

public class SyncController : ControllerBase
{

private WebServerAgent webServerAgent;

// Injected thanks to Dependency Injection
public SyncController (WebServerAgent webServerAgent)
=> this.webServerAgent = webServerAgent;

/// <summary>
/// This POST handler is mandatory to handle all the sync process
[HttpPost]
public async Task Post ()
{
// If you are using the [Authorize] attribute you don't need to check
// the User.Identity.IsAuthenticated value
if (HttpContext.User.Identity.IsAuthenticated)
{
// OPTIONAL: —————— = e e
// OPTIONAL: Playing with user coming from bearer token
// OPTIONAL: ————— oo

// on each request coming from the client, just inject the User Id,
—parameter

webServerAgent .OnHttpGettingRequest (args =>

{

var pUserId = args.Context.Parameters["UserId"];

if (pUserId == null)
{
var userld = this.HttpContext.User.Claims.FirstOrDefault (
x => x.Type == ClaimTypes.NameIdentifier);
args.Context.Parameters.Add ("UserId", userld);

)

// Because we don't want to send back this value, remove it from the_,
—response
webServerAgent .OnHttpSendingResponse (args =>
{
if (args.Context.Parameters.Contains ("UserId"))
args.Context.Parameters.Remove ("UserId");

)i

await webServerAgent.HandleRequestAsync (this.HttpContext);

(continues on next page)

42 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

}
else

{
this.HttpContext.Response.StatusCode = StatusCodes.Status40lUnauthorized;

/// <summary>
/// This GET handler is optional. It allows you to see the configuration hosted,

—on the server

/// The configuration is shown only if Environmenent == Development
/// </summary>

[HttpGet]

[AllowAnonymous]

public Task Get () => this.HttpContext.WriteHelloAsync (webServerAgent) ;

2.7 Change Tracking

SQL Server provides a great feature that track changes to data in a database: Change tracking.

This features enables applications to determine the DML changes (insert, update, and delete operations) that were
made to user tables in a database.

Change tracking is supported since SQL Server 2008 and is available from within Azure Sql Database.
If you need, for some reasons, to run your sync from an older version, you will have to fallback on the
SglSyncProvider.

Note: If you need more information on this feature, the best place to start is here : Track data changes with SQL
Server

A new Sql sync provider which uses this Change Tracking feature is available with DMS:
This provider is called SglSyncChangeTrackingProvider.

The SglSyncChangeTrackingProvider is compatible with all others sync providers: You can have a server
database using the SgqlSyncChangeTrackingProvider and some clients databases using any of the others
providers.

What does it mean to use Change Tracking from within your database ?
* No more tracking tables in your database
» No more triggers on your tables in your database
¢ Metadatas retention managed by SQL Server itself

* Changes tracked by the SQL Engine, way better performances than using triggers and tracking tables

2.7. Change Tracking 43

https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server?view=sql-server-ver15#Tracking
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server?view=sql-server-ver15#Tracking

Dotmim.Sync, Release 0.9.5

To be able to use SglSyncChangeTrackingProvider on your database, do not forget to activate the Change
Tracking on your database :

ALTER DATABASE AdventureWorks
SET CHANGE_TRACKING = ON
(CHANGE_RETENTION = 14 DAYS, AUTO_CLEANUP = ON)

You don’t have to activate Change Tracking on each table. It will be enabled by DMS on each table part of the sync
process.

Once it’s done, the code is almost the same:

new SglSyncChangeTrackingProvider ("Data Source=....");
new SglSyncChangeTrackingProvider ("Data Source=....");

var serverProvider
var clientProvider

2.8 ASP.NET Core Web Proxy

Let’s say... in the real world, you will not have always a direct TCP link from your client machine to your enterprise
server.

Even though, it’s a good practice to protect you database server behing a web api. That’s why we will use a sync web
proxy, and we will expose our server to sync, through a web api.

Here is the overall architecture:

| sqlsyncProvider WebServerOrchestrator | webClientOrchestrator SyncAgent LocalOrchestrator Providers

2.8.1 Overview

Hint: You will find the sample used on this chapter, here : Hello web sync sample .

To be able to proxify everything, we should:
Server side:
* Create a new ASP.NET Core Web application.
¢ Add the Dotmim.Sync.Web.Server nuget package to the ASPNET project.

e Add the server provider. As we are using sql server with change tracking, we are adding Dot-
mim.Sync.SqlSyncChangeTrackingProvider .

44 Chapter 2. Need Help

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/HelloWebSync
https://www.nuget.org/packages/Dotmim.Sync.Web.Server
https://www.nuget.org/packages/Dotmim.Sync.SqlServer.ChangeTracking
https://www.nuget.org/packages/Dotmim.Sync.SqlServer.ChangeTracking

Dotmim.Sync, Release 0.9.5

¢ Add the required configuration to the Startup. cs file.

* Create a new controller and intercept all requests to handle the synchronisation.
Client side:

* Create any kind of client application (Console, Windows Forms, WPF .. .)

¢ Add the Dotmim.Sync.Web.Client nuget package to the client application:

* Add the client provider. For example the Dotmim.Sync.SqliteSyncProvider

e Create a new SyncAgent using a local orchestrator with the SgqliteSyncProvider and a remote
WebRemoteOrchestrator orchestrator.

2.8.2 Server side

Note: We will start from the Hello sync sample sample and will migrate it to the web architecture.

Once your ASP.NET application is created, we’re adding the specific web server package and our server provider:

* Dotmim. Sync.Web.Server: This package will allow us to expose everything we need, through a .Net core
Web API

* Dotmim.Sync.SglServer.ChangeTracking: This package will allow us to communicate with the
SQL Server database.

Once we have added these DMS packages to our project, we are configuring the Sync provider in the Startup class,
thanks to Dependency Injection.

Be careful, some services are required, but not part of DMS (like . AddDistributedMemoryCache () and
.AddSession () for instance.)

Do not forget to add the session middleware as well (app.UseSession();)

Note: DMS uses a lot of http request during one user’s sync. That’s why Session is mandatory. Do not forget to add it
in your configuration.

Having a cache is mandatory to be able to serve multiple requests for one particular session (representing one sync
client)

Simple Scope

public void ConfigureServices (IServiceCollection services)

{

services.AddControllers();

services.AddDistributedMemoryCache () ;
services.AddSession (options => options.IdleTimeout = TimeSpan.FromMinutes (30));

// [Required]: Get a connection string to your server data source
var connectionString = Configuration.GetSection ("ConnectionStrings") [
—"SglConnection"];

(continues on next page)

2.8. ASP.NET Core Web Proxy 45

https://www.nuget.org/packages/Dotmim.Sync.Web.Client
Dotmim.Sync.SqliteSyncProvider
https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/HelloSync

Dotmim.Sync, Release 0.9.5

(continued from previous page)

var options = new SyncOptions { };

// [Required] Tables involved in the sync process:
var tables = new string[] {"ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader", "SalesOrderDetail" }

// [Required]: Add a SqglSyncProvider acting as the server hub.

services.AddSyncServer<SglSyncChangeTrackingProvider> (connectionString, tables,
—options);

// This method gets called by the runtime. Use this method to configure the HTTP_
—request pipeline.

public void Configure (IApplicationBuilder app, IWebHostEnvironment env)
{

if (env.IsDevelopment ())

{

app.UseDeveloperExceptionPage () ;
app.UseRouting () ;
app.UseSession();
app.UseEndpoints (endpoints =>

endpoints.MapControllers();

Once we have correctly configured our sync process, we can create our controller:
* Create a new controller (for example SyncController)
* In this newly created controller, inject your WebServerAgent instance.

Use this newly injected instance in the POST method, calling the HandleRequestAsync method and ...
that’s all !

* We can optionally add a GET method, to see our configuration from within the web browser. Useful to check if
everything is configured correctly.

[ApiController]
[Route ("api/[controller]")]
public class SyncController : ControllerBase
{
private WebServerAgent webServerAgent;
private readonly IWebHostEnvironment env;

// Injected thanks to Dependency Injection
public SyncController (WebServerAgent webServerAgent, IWebHostEnvironment env)
{

this.webServerAgent = webServerAgent;

this.env = env;

(continues on next page)

46 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

/// <summary>
/// This POST handler is mandatory to handle all the sync process
/// </summary>
/// <returns></returns>
[HttpPost]
public Task Post ()
=> webServerAgent .HandleRequestAsync (this.HttpContext) ;

/// <summary>
/// This GET handler is optional. It allows you to see the configuration hosted
—on the server
/// </summary>
[HttpGet]
public async Task Get ()
{
if (env.IsDevelopment ())
{
await this.HttpContext.WriteHelloAsync (webServerAgent);
}
else
{

var stringBuilder = new StringBuilder();

stringBuilder.AppendLine ("<!doctype html>");

stringBuilder.AppendLine ("<html>");

stringBuilder.AppendLine ("<title>Web Server properties</title>");
stringBuilder.AppendLine ("<body>") ;

stringBuilder.AppendLine (" PRODUCTION MODE. HIDDEN INEO ");
stringBuilder.AppendLine ("</body>") ;

await this.HttpContext.Response.WriteAsync (stringBuilder.ToString());

Launch your browser and try to reach sync web page. (Something like https://localhost:{[} YOUR_PORT{]}/api/sync
)

You should have useful information, like a test to reach your server database, your SyncSetup, your
SglSyncProvider, your SyncOptions and your WebServerOptions configuration:

2.8. ASP.NET Core Web Proxy 47

https://localhost:{[}YOUR_PORT{]}/api/sync

Dotmim.Sync, Release 0.9.5

Web Server properties

Trying to reach database

Database

Check database AdventureWorks: Done.

Engine version

Microsoft SOL Server 2016 (SP1) (KBE3182545) - 13.04001.0 (i64) Oct 28 2016 1817:30 Copyright () Microsoft Corporation Express Edition (64-bit) on
Windows 10 Enterprise £.3 {Build 18363) (Hypervisor)

ScopeName: DefaultScope
Setup
“thls®: [
{

: "ProductCatogory”,

(1

"tn": "ProductModel”,
‘cals®: []
Provider

‘UseChangeTracking®: true,
*SupportBul kDpera "I true,

‘CanBeServerProvider true,

‘PraviderTypeManc™ = ";c'_‘_-:,-1c=n:u'_d|:r, IJ:-_r'Lr.‘_-..'r:.‘_-qlbcrec-.‘_-:ll':»:,r_-l:":'\.idc",
*Motadata®: {},
"ConncctionString™: “Data Source=({localdb)y\wmssgllocaldb; Indtial Catalog=Gdvernturceorks; Integrated Seouritystroe;®

If your configuration is not correct, you should have an error message, like this:

Web Server properties

Trying to reach database

Exception occured

Canniot open database “AdventureWorkds” reguestad by the login. The login falled. Login failed for user 'EUROPE\spertus’.
ScopeMName: DefaultScope

Setup

Multi Scopes

If you need to handle multi scopes, here is the implementation with 2 scopes : “prod”, “cust”.

public void ConfigureServices (IServiceCollection services)

{

services.AddControllers();

services.AddDistributedMemoryCache () ;

(continues on next page)

48 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

services.AddSession (options => options.IdleTimeout = TimeSpan.FromMinutes (30));

var connectionString = Configuration.GetSection ("ConnectionStrings") [
—"SglConnection"];

var options = new SyncOptions { };
var tablesl = new string[] {"ProductCategory", "ProductModel", "Product" };
var tables2 = new string[] {"Address", "Customer", "CustomerAddress"};

services.AddSyncServer<SglSyncChangeTrackingProvider> (connectionString,
"prod", tablesl, options);

services.AddSyncServer<SglSyncChangeTrackingProvider> (connectionString,
"cust", tables2, options);

Once we have correctly configured our sync process, we can create our controller:
 Create a new controller (for example SyncController)

* In this newly created controller, inject your IEnumerable<WebServerAgent > instance.

[ApiController]

[Route ("api/[controller]")]

public class SyncController : ControllerBase

{
private IEnumerable<WebServerAgent> webserverAgents;
private readonly IWebHostEnvironment env;

// Injected thanks to Dependency Injection
public SyncController (IEnumerable<WebServerAgent> webServerAgents,
IWebHostEnvironment env)

this.webServerAgents = webServerAgents;
this.env = env;

/// <summary>

/// This POST handler is mandatory to handle all the sync process
/// </summary>

/// <returns></returns>

[HttpPost]

public Task Post ()

{

var scopeName = HttpContext.GetScopeName () ;

var webserverAgent = webserverAgents.FirstOrDefault (
c => c.ScopeName == scopeName) ;

await webserverAgent.HandleRequestAsync (HttpContext) .ConfigureAwait (false);

/// <summary>

/// This GET handler is optional.

/// It allows you to see the configuration hosted on the server
/// </summary>

(continues on next page)

2.8. ASP.NET Core Web Proxy 49

Dotmim.Sync, Release 0.9.5

(continued from previous page)

[HttpGet]
public async Task Get ()
{
if (env.IsDevelopment ())
{
await this.HttpContext.WriteHelloAsync (this.webserverAgents) ;
}
else
{

var stringBuilder = new StringBuilder();

stringBuilder.AppendLine ("<!doctype html>");

stringBuilder.AppendLine ("<html>");

stringBuilder.AppendLine ("<title>Web Server properties</title>");
stringBuilder.AppendLine ("<body>") ;

stringBuilder.AppendLine (" PRODUCTION MODE. HIDDEN INFO ");
stringBuilder.AppendLine ("</body>") ;

await this.HttpContext.Response.WriteAsync (stringBuilder.ToString());

2.8.3 Client side

The client side is pretty similar to the starter sample, except we will have to use a proxy orchestrator instead of a
classic remote orchestrator:

var serverOrchestrator = new WebRemoteOrchestrator ("https://localhost:44342/api/sync

="

// Second provider is using plain old Sql Server provider,
// relying on triggers and tracking tables to create the sync environment
var clientProvider = new SglSyncProvider (clientConnectionString);

// Creating an agent that will handle all the process
var agent = new SyncAgent (clientProvider, serverOrchestrator);

do
{
// Launch the sync process
var sl = await agent.SynchronizeAsync();
// Write results
Console.WriteLine (sl);
} while (Console.ReadKey () .Key != ConsoleKey.Escape);

Console.WriteLine ("End");

Now we can launch both application, The Web Api on one side, and the Console application on the other side. Just hit
Enter and get the results from your synchronization over http.

50 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

[Wb Server properties x® IS
I O A hitps//localhost4434 = @ A 0

Database

Engine varsion

2.9 ASP.NET Core Web Authentication

2.9.1 Overview

The Dotmim. Sync.Web.Server package used to expose DMS through ASP.Net Core Web Api is just a wrapper
using the web HttpContext object to figure out what should be done, internally.

Hint: You will find the auth sample here : Web Authentication Sample

Just as a remember, the Web Server code looks like this:

[ApiController]
[Route ("api/[controller]")]
public class SyncController : ControllerBase
{
private WebServerAgent webServerAgent;
private readonly IWebHostEnvironment env;

// Injected thanks to Dependency Injection
public SyncController (WebServerAgent webServerAgent, IWebHostEnvironment env)
{

this.webServerAgent = webServerAgent;

this.env = env;

/// <summary>
/// This POST handler 1is mandatory to handle all the sync process
/// </summary>
/// <returns></returns>
[HttpPost]
public Task Post ()
=> webServerAgent .HandleRequestAsync (this.HttpContext) ;

/// <summary>

/// This GET handler is optional. It allows you to see the configuration hosted
—~on the server

/// </summary>

[HttpGet]

(continues on next page)

2.9. ASP.NET Core Web Authentication 51

https://github.com/Mimetis/Dotmim.Sync/blob/master/Samples/HelloWebAuthSync

Dotmim.Sync, Release 0.9.5

(continued from previous page)

public async Task Get ()
{
if (env.IsDevelopment ())
{
await this.HttpContext.WriteHelloAsync (webServerAgent);
}
else

{

var stringBuilder = new StringBuilder();

stringBuilder.AppendLine ("<!doctype html>");
stringBuilder.AppendLine ("<html>") ;

stringBuilder.AppendLine ("<title>Web Server properties</title>");
stringBuilder.AppendLine ("<body>") ;

stringBuilder.AppendLine (" PRODUCTION MODE. HIDDEN INFO ");
stringBuilder.AppendLine ("</body>");

await this.HttpContext.Response.WriteAsync (stringBuilder.ToString());

As you can see, we are completely integrated within the ASP.Net Core architecture. So far, protecting our API is just
like protecting any kind of ASP.NET Core Api.

If you want to rely on a strong OAUTH2 / OpenID Connect provider, please read:
* Microsoft : Mobile application calling a secure Web Api, using Azure AD
* AWS : Securing a Web API using AWS Cognito
* Google : OAUTH?2 with Google APIS
¢ Identity Server : Protecting an API using Identity Server

DMS relies on the ASP.NET Core Web Api architecture. So far, you can secure DMS like you’re securing any kind of
exposed Web API:

» Configuring the controller
 Configuring the identity provider protocol

* Calling the controller with an authenticated client, using a bearer token

Note: More information about ASP.Net Core Authentication here : Overview of ASP.NET Core authentication

2.9.2 Server side

We are going to use a Bearer token validation on the server side:
» Unsecure but easier: Using an hard coded bearer token (Do not use this technic in production)
* Secured but relying on an external token provider: Using for example Azure Active Directory Authentication.

Configuration

You need to configure your Web API project to be able to secure any controller.

52 Chapter 2. Need Help

https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-mobile-overview
https://referbruv.com/blog/posts/securing-aspnet-core-apis-with-jwt-bearer-using-aws-cognito
https://developers.google.com/api-client-library/dotnet/guide/aaa_oauth
https://identityserver4.readthedocs.io/en/latest/topics/apis.html
https://docs.microsoft.com/en-us/aspnet/core/security/authentication
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/azure-active-directory/

Dotmim.Sync, Release 0.9.5

In your Startup.cs, you should add authentication services, with JWT Bearer protection.

It involves using services.AddAuthentication (JwtBearerDefaults.
AuthenticationScheme) .AddJwtBearer (options

=>{})

Here is a quick sample, without relying on any external cloud identity provider (once again, DON’T do that in
production, it’s INSECURE and just here for the sake of explanation)

public void ConfigureServices (IServiceCollection services)

{

services.AddControllers();

services.AddDistributedMemoryCache () ;
services.AddSession (options => options.IdleTimeout = TimeSpan.FromMinutes (30));

// Adding a default authentication system
JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Clear(); // => remove default,,

—~claims

services.AddAuthentication (JwtBearerDefaults.AuthenticationScheme)
.AddJwtBearer (options =>
{

ValidIssuer = "Dotmim.Sync.Bearer",
ValidAudience = "Dotmim.Sync.Bearer",
IssuerSigningKey = new SymmetricSecurityKey (Encoding.UTF8.GetBytes (
<, "RANDOM_KEY"))
1)

// [Required]: Get a connection string to your server data source
var connectionString = Configuration.GetSection ("ConnectionStrings") [
—"SglConnection"];

// [Required] Tables involved in the sync process:
var tables = new string[] {"ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader",
—"SalesOrderDetail" };

// [Required]: Add a SqglSyncProvider acting as the server hub.
services.AddSyncServer<SglSyncProvider> (connectionString, tables);

As an example, if you’re using Azure AD authentication, your code should be more like:

public void ConfigureServices (IServiceCollection services)

{

services.AddControllers();

// [Required]: Handling multiple sessions
services.AddDistributedMemoryCache () ;
services.AddSession (options => options.IdleTimeout = TimeSpan.FromMinutes (30));

// Using Azure AD Authentication

services.AddMicrosoftIdentityWebApiAuthentication (Configuration)
.EnableTokenAcquisitionToCallDownstreamApi ()
.AddInMemoryTokenCaches () ;

(continues on next page)

2.9. ASP.NET Core Web Authentication 53

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// [Required]: Get a connection string to your server data source
var connectionString = Configuration.GetSection ("ConnectionStrings") [
—"SglConnection"];

// [Required] Tables involved in the sync process:
var tables = new string[] {"ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader",
—"SalesOrderDetail" };

// [Required]: Add a SqglSyncProvider acting as the server hub.
services.AddSyncServer<SglSyncProvider> (connectionString, tables);

Note: More on Code Configuration Here.

Finally, do not forget to add the Authentication Middlewares (and Session Middleware) as well:

// This method gets called by the runtime. Use this method to configure the HTTP_
—request pipeline.
public void Configure (IApplicationBuilder app, IWebHostEnvironment env)

{

if (env.IsDevelopment ())

{

app.UseDeveloperExceptionPage () ;
app.UseHttpsRedirection () ;
app.UseRouting () ;
app.UseAuthentication();
app.UseAuthorization();
app.UseSession();

app.UseEndpoints (endpoints =>

endpoints.MapControllers();

Securing the controller

This part is the most easier one. Yo can choose to secure all the controller, using the [Authorize] attribute on the
class itself, or you can use either [Authorize] / [AllowAnonymous] on each controller methods:

The simplest controller could be written like this, using the [Authorize] attribute:

[Authorize]

[ApiController]

[Route ("api/[controller]")]

public class SyncController : ControllerBase
{

54 Chapter 2. Need Help

https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-protected-web-api-app-configuration

Dotmim.Sync, Release 0.9.5

Maybe you’ll need to expose the GET method to see the server configuration. In that particular case, we can use both
[Authorize] and [AllowAnonymous]:

[ApiController]

[Route ("api/[controller]")]

public class SyncController : ControllerBase
{

private WebServerAgent webServerAgent;

public SyncController (WebServerAgent webServerAgent)
=> this.webServerAgent = webServerAgent;

[HttpPost]

[Authorize]

public async Task Post () => webServerAgent.HandleRequestAsync (this.HttpContext);
[HttpGet]

[AllowAnonymous]

public Task Get () => this.HttpContext.WriteHelloAsync (webServerAgent);

And eventually, you can even have more control, using the Ht tpContext instance, from within your POST handler:

[HttpPost]
public async Task Post ()

{
// If you are using the [Authorize] attribute you don't need to check

// the User.Identity.IsAuthenticated value
if (!HttpContext.User.Identity.IsAuthenticated)

{
this.HttpContext.Response.StatusCode = StatusCodes.Status40lUnauthorized;

return;

// using scope and even claims, you can have more grain control on your,
—authenticated user

string scope = (User.FindFirst ("http://schemas.microsoft.com/identity/claims/scope
—"))?.Value;

string user = (User.FindFirst (ClaimTypes.Nameldentifier))?.Value;

if (scope != "access_as_user")

{
this.HttpContext.Response.StatusCode = StatusCodes.Status40lUnauthorized;

return;

await orchestrator.HandleRequestAsync (this.HttpContext) ;

2.9.3 Client side

From you mobile / console / desktop application, you just need to send your Bearer Token embedded into your
HttpClient headers.

The WebRemoteOrchestrator object allows you to use your own HttpClient instance. So far, create an
instance and add your bearer token to the DefaultRequestHeaders.Authorization property.

2.9. ASP.NET Core Web Authentication 55

Dotmim.Sync, Release 0.9.5

// Getting a JWT token

// You should get a Jwt Token from an identity provider like Azure, Google, AWS or,
—other.

var token = GeneratedwtToken(...);

HttpClient httpClient = new HttpClient ();
httpClient.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue ("Bearer
—", token);

// Adding the HttpClient instance to the web client orchestrator
var serverOrchestrator = new WebRemoteOrchestrator (

"https://localhost:44342/api/sync", client:httpClient);

var clientProvider = new SglSyncProvider (clientConnectionString);
var agent = new SyncAgent (clientProvider, serverOrchestrator);

var result = await agent.SynchronizeAsync();

Xamaring sample

Note: More on mobile token acquisition : Acquire token from mobile application

MSAL allows apps to acquire tokens silently and interactively.

When you call AcquireTokenSilent () or AcquireTokenInteractive (), MSAL returns an access
token for the requested scopes.

The correct pattern is to make a silent request and then fall back to an interactive request.

string[] scopes = new string[] {"user.read"};
var app = PublicClientApplicationBuilder.Create(clientId) .Build();
var accounts = await app.GetAccountsAsync();

AuthenticationResult result;
try
{
result = await app.AcquireTokenSilent (scopes, accounts.FirstOrDefault())
.ExecuteAsync();
}
catch (MsalUiRequiredException)
{
result = await app.AcquireTokenInteractive (scopes)
.ExecuteAsync () ;

2.10 Converters and Serializers

2.10.1 Overview

You can create your own customer serializer, changing the default JSON serializer to any kind of serializer.

56 Chapter 2. Need Help

https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-mobile-acquire-token

Dotmim.Sync, Release 0.9.5

As well, if you have a special type that DMS is unable to convert correctly, you can use your own custom converter
with your own type conversion.

Note: Using serializers and converters are only useful if you have an HTTP architecture.

When using the HTTP mode, DMS uses two additional components:
¢ A serializer, to transforms a database row into a serialized stream. The default serializer used by DMS is JSON

* A converter, to converts a data type into another one. For example a byte [] array to base64 string. DMS is
not using any default converter, relying on the serializer default converter.

2.10.2 Custom Serializer

Before seeing how to create a custom serializer, we should explain the serialization mechanism:

Warning: Something really important to notice : Client dictates its own serialization mechanism.

When you run a synchronization, The WebRemoteOrchestrator sends a special HTTP header
dotmim-sync-serialization-format, containing two information:

* First one is specifying the serialization format to use. The server then knows how to deserialize the messages
and also uses the same serialization format when sending back messages to the client.

* Second one is specifying if the client needs batch mode or not.

Here is an example of one header sent by the client to the server, during a sync session:

dotmim-sync-serialization-format: {
"f" : "json",
"s":500

The meaning of this header is:
* Client requests to sends and receives messages serializated in a Json format
¢ Client requests to have multiple files with a overall max length of 500 ko approximatively.

Once the server received this payload, contained in the header, he knows he has to serialize everything in a JSON
format, and then will generate batch files, with approximatively 500 ko for each payload.

Note: Batch mode is explained later in the chapter Configuration

MessagePack serializer

Hint: You will find the sample used for this chapter, here : Converter & Serializer

‘We can now set our own serializer.
To be able to use a new serializer, we should:

* Implement the interfaces ISerializerFactory and ISerializer<T>

2.10. Converters and Serializers 57

Configuration.html
https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/ConverterWebSync

Dotmim.Sync, Release 0.9.5

¢ Reference this serializer on both side (client and server)

/// <summary>
/// Represents a factory of generic serializers.
/// This object should be able to get a serializer of each type of T
/// </summary>
public interface ISerializerFactory
{
string Key { get; }
ISerializer<T> GetSerializer<T>();

/// <summary>
/// Represents a generic serializer for a defined type of T
/// </summary>
public interface ISerializer<T>
{
Task<T> DeserializeAsync (Stream ms) ;
Task<byte[]> SerializeAsync (T obj);

Here is an example using a new serializer based on MessagePack, using the package MessagePack-CSharp

public class CustomMessagePackSerializerFactory : ISerializerFactory
{
public string Key => "mpack";
public ISerializer<T> GetSerializer<T>() => new CustomMessagePackSerializer<T>();

public class CustomMessagePackSerializer<T> : ISerializer<T>
{
public CustomMessagePackSerializer () =>
MessagePackSerializer.SetDefaultResolver (ContractlessStandardResolver.
—Instance);

public T Deserialize(Stream ms) => MessagePackSerializer.Deserialize<T> (ms);
public byte[] Serialize(T obj) => MessagePackSerializer.Serialize (obj);

This class should be added to both the server side and the client side.

On the server side, add the serializer to the web server serializers collection:

var connectionString = Configuration.GetSection ("ConnectionStrings") ["SglConnection"];
var tables = new string[] {"ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader", "SalesOrderDetail" };

// To add a converter, create an instance and add it to the special WebServerOptions
var webServerOptions = new WebServerOptions();
webServerOptions.Serializers.Add (new CustomMessagePackSerializerFactory());

// Don't forget to add this converter when calling the DI AddSyncServer () method !
services.AddSyncServer<SglSyncChangeTrackingProvider>
(connectionString, tables, null, webServerOptions);

On the client side, add this serializer as the default serializer:

58 Chapter 2. Need Help

https://github.com/neuecc/MessagePack-CSharp

Dotmim.Sync, Release 0.9.5

// Create a web proxy Orchesrtrator with a custom serializer
var serverProxyOrchestrator = new WebRemoteOrchestrator ("https://localhost:44342/api/
—sync")
{
SerializerFactory = new CustomMessagePackSerializerFactory ()

bi

var clientProvider = new SglSyncProvider (clientConnectionString);
var agent = new SyncAgent (clientProvider, serverOrchestrator);

Now the communication between the server side and the client side will be completely made in a MessagePack format
!

To check if everything is serialized correctly, you can use a web debugging proxy, like Fiddler or you can use an
Interceptor<T>, available from the WebRemoteOrchestrator orchestrator instance:

//Spy the changes sent
serverProxyOrchestrator.OnSendingChanges (args =>

{

using (var ms = new MemoryStream(args.Content))
{
using (var reader = new StreamReader (ms))
{
var text = reader.ReadToEnd();

Console.ForegroundColor = ConsoleColor.Red;
Console.WritelLine (text);
Console.ResetColor();

)i

B CA\PROJECTS\DOTMIM.SYNC\ Samplesh ConverterWebSyne\ ConverterWebSyneClient\bin\Debug\netcoreappl. 1\ ComverteWebSymeClient. exe - [X

2.10.3 Custom converter

DMS relies on the serializer’s converter to convert each value from each row.

2.10. Converters and Serializers 59

https://www.telerik.com/fiddler

Dotmim.Sync, Release 0.9.5

But you can create and use your own converter, that will be called on each row, before and after the serialization
process.

Like the ISerializerFactory, you can create your own IConverter:
¢ This converter should be available both on the client and the server.
* The server should registers all converters used by any client

* The client registers its own converter.

public interface IConverter

{

/// <summary>

/// get the unique key for this converter
/// </summary>

string Key { get; }

/// <summary>

/// Convert a row before being serialized
/// </summary>

void BeforeSerialize (SyncRow row);

/// <summary>

/// Convert a row afeter being deserialized
/// </summary>

void AfterDeserialized (SyncRow row);

Example of a simple IConverter:

public class CustomConverter : IConverter
{

public string Key => "cuscom";

public void BeforeSerialize (SyncRow row)
{
// Each row belongs to a Table with its own Schema
// Easy to filter if needed
if (row.Table.TableName != "Product")
return;

// Encode a specific column, named "ThumbNailPhoto"
if (row["ThumbNailPhoto"] != null)
row["ThumbNailPhoto"] = Convert.ToBaseb64String((byte[])row["ThumbNailPhoto

// Convert all DateTime columns to ticks

foreach (var col in row.Table.Columns.Where(c => c.GetDataType() ==
—~typeof (DateTime)))

{

if (row[col.ColumnName] != null)
row[col.ColumnName] = ((DateTime)row[col.ColumnName]) .Ticks;

public void AfterDeserialized(SyncRow row)

{

(continues on next page)

60 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// Only convert for table Product
if (row.Table.TableName != "Product")
return;

// Decode photo
row ["ThumbNailPhoto"] = Convert.FromBase64String ((string)row["ThumbNailPhoto

// Convert all DateTime back from ticks
foreach (var col in row.Table.Columns.Where(c => c.GetDataType () ==_
—typeof (DateTime)))
{
if (row[col.ColumnName] != null)
row[col.ColumnName] = new DateTime (Convert.ToInt64 (row[col.
—ColumnName])) ;

}

On client side, register this converter from your WebRemoteOrchestrator:

// Create the web proxy client provider with specific options
var proxyClientProvider = new WebRemoteOrchestrator

{

SerializerFactory = new CustomMessagePackSerializerFactory(),
Converter = new CustomConverter ()

}i

On server side, add this converter to the list of available converters:

var webServerOptions = new WebServerOptions

{

i

webServerOptions.Serializers.Add (new CustomMessagePackSerializerFactory());
webServerOptions.Converters.Add (new CustomConverter());

Without Converter:

2.10. Converters and Serializers 61

Dotmim.Sync, Release 0.9.5

B C\PROJECTS\DOTMIBASY MO, Samplesh Corverteriy

nc\ ConverterWebSyncClient\bin\Debug' netcoreappld. 1\ ComverterWebSynoClient.exe — O o

With Converter:

B CAPROJECTSUDOTMIM.SYMC, Samples\ConverterWebSync\ConverterWebSyncClient\bin\Debug\netcoreapp3. 1\ ConverterWebSyncClient.exe = O x

2.11 Increasing timeout

If you’re not working on TCP but more likely on HTTP using a web api to expose your sync process, you will
probably have to face some issues with timeout.

Note: Before increasing timeout, be sure you have already setup a snapshot for all your new clients.

By default, Timeout is fixed to 2 minutes.

62 Chapter 2. Need Help

Snapshot.html

Dotmim.Sync, Release 0.9.5

To increase the overall timeout, you will have to work on both side:
* Your web server api project.

* Your client application.

2.11.1 Server side

There is no way to increase the Timeout period on your web api using code, with .Net Core.

The only solution is to provide a web . config, that you add manually to your project.

Note: More information here : increase-the-timeout-of-asp-net-core-application

Here is a web . config example where request Timeout is fixed to 20 minutes:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.webServer>
<handlers>
<add name="aspNetCore" path="x" verb="x"
modules="AspNetCoreModule" resourceType="Unspecified"/>
</handlers>
<aspNetCore requestTimeout="00:20:00" processPath="%LAUNCHER_PATHS"
arguments="%LAUNCHER_ARGS%" stdoutLogEnabled="false"
stdoutLogFile=".\logs\stdout" forwardWindowsAuthToken="false"/>
</system.webServer>
</configuration>

2.11.2 Client side

On the client side, the web orchestrator WebRemoteOrchestrator instance uses its own Ht tpClient instance

unless you specify your own Ht t pClient instance.
So far, to increase the timeout, you can either:

* Provide your own Ht tpClient instance with the Timeout property correctly set:

var handler = new HttpClientHandler { AutomaticDecompression = DecompressionMethods.
—~GZip };
var client = new HttpClient (handler) { Timeout = TimeSpan.FromMinutes (20) };

var clientProvider = new WebRemoteOrchestrator ("http://my.syncapi.com:88/Sync", null, |

—null, client);

¢ Increase the existing Ht t pClient instance, created by WebRemoteOrchestrator:

var clientProvider = new WebRemoteOrchestrator ("http://my.syncapi.com:88/Sync");
clientProvider.HttpClient.Timeout = TimeSpan.FromMinutes (20);

2.11. Increasing timeout

63

https://medium.com/aspnetcore/increase-the-timeout-of-asp-net-core-application-9a7b4f6deebf

Dotmim.Sync, Release 0.9.5

2.12 Snapshot

2.12.1 Overview

Sometimes, client initialization can be a problem due to the time needed for the server to generate the first batches.
The idea is to reduce this time for initialization of new clients.

Wihtout snapshot, we could have some troubles due to the heavy work from the server side, when initializing a new
client:

1) A new Client launches a synchronization. Its local database is empty and should be synced with all rows from
all tables part of the sync configuration.

2) Server orchestrator gets the request, initializes the medata stores, sends back the schema if needed, and then
launches the sync process internally.

3) Server prepares batches files, based on all tables involved in the sync (using _Initialize stored procedures).
4) Server streams back the files to the client orchestrator.

5) Client orchestrator applies the rows to the local database using the client provider.

°
s <o e &

o . h
» . + tch r
+
o ’

Depending on numbers of tables, and rows, the step 3 could take a lot of times.
During this generation time the client has to wait, with no response from server, until the batches are ready.

Warning: In a TCP mode, it will work since the client will wait until a response from the server. But in an HTTP
mode you can eventually have a timeout exception raised. ..

Hint: In HTTP mode, you can increase the timeout duration , but it’s not ideal. ..

The snapshot feature comes in here to resolve this issue.
The idea is quite simple : Creating a snapshot of the server database on time TS, available for all new clients.
A common scenario would be:

 Create a snapshot every 2 weeks on the server side, to get the most relevant and up to date data.

» Every new client will download and apply this snapshot on initialization.

* This new client will then synchronize all new datas in between the snapshot (so TS) and T.

64 Chapter 2. Need Help

/timeout.html

Dotmim.Sync, Release 0.9.5

Here is the steps to create a server snapshot and the configuration from both server and client side:

2.12.2 Server side

Create a new method, that will generate a snapshot at a current time 7 with all rows / tables, available for all new

clients:

Get all customers rows

>
Create customers batches files
Get all products rows

>
Create products batches files
Get all addresses rows

-

Create addresses batches files

v

Batches files

Note: Creates a new project, a console application for example, to create a snapshot.

var serverProvider = new SglSyncProvider ("Data Source= ...");

// new setup with all tables involved
var setup = new SyncSetup(allTables);

// snapshot directory

var snapshotDirectoryName = "snapshots";

var snapshotDirctory = Path.Combine (Environment.CurrentDirectory,
—snapshotDirctoryName) ;

var options = new SyncOptions

{
SnapshotsDirectory = snapshotDirctory,
BatchSize = 3000

}i

// Create a remote orchestrator
var remoteOrchestrator = new RemoteOrchestrator (serverProvider, options,

// Create a snapshot
await remoteOrchestrator.CreateSnapshotAsync();

setup) ;

Once created, the folder looks like this:

2.12. Snapshot

65

Dotmim.Sync, Release 0.9.5

Snapshots » ALL

o
Mame Date modified
|] 000_odnnvhvs_unw.batch 04/02/2020 13:34
| | 001_bOcjduls_prz.batch 04/02/2020 13:34
SUMIMary.Jscn 04,/02/2020 13:34

* Some *.batch files containing all the rows, for all the sync tables.

* A summary.json contains all the mandatory information regarding this snapshot

"dirname": "ALL",

"dir":

"eg":

"parts":

{

[

"file": "000_

"index": O,

"C:\\Users\\spertus.EUROPE\\Snapshots",
2001,

fnwkoou5_tdj.batch",

"last": false,
"tables": [
{
"n": "ProductCategory"
} ’
{
"n": "ProductModel"
} ’
{
"n": "Product"

"file": "001_

"index": 1,
"last": true,
"tables": [

{

"R

"n".

"n":

"n":

"N

02zy0Oswg_nce.batch",

"Product"

"Address"

"Customer"

"CustomerAddress"

"SalesOrderHeader"

(continues on next page)

66

Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

"n": "SalesOrderDetail"

We have here, the server t imestamp when the snapshot was generated, all the files, ordered, with table contained in
each file.

Filtered clients

For filtered client, the snapshot will be a little bit different, since it will not contains all the data. More, each filtered
client will have its own snapshot, based on its filter parameters values !

To generate a filtered snapshot, just add the SyncParameters values to the new SyncContext instance argument:

// Setup with a filter on CustomerId, on table Customer
var setup = new SyncSetup(allTables);
setup.Filters.Add("Customer", "CustomerId");

// Create a filtered snapshot

var snapshotCustomerl001 = new SyncContext ();
snapshotCustomerl00l.Parameters = new SyncParameters();
snapshotCustomerl1001.Parameters.Add ("CustomerId", "1001");

await Server.RemoteOrchestrator.CreateSnapshotAsync();

Activate the snapshot option for all new clients

To activate this snapshot, the server should know where each snapshot is located.

The SyncOptions has a new property called SnapshotsDirectory:

// Options used for client and server when used in a direct TCP mode:
var options = new SyncOptions {
SnapshotsDirectory = Path.Combine (
Environment.GetFolderPath (Environment.SpecialFolder.UserProfile),
"Snapshots")
}i

HTTP mode with ASP.Net Core Web API

The ASP.NET Core web api looks like this, now:

public void ConfigureServices (IServiceCollection services)

{

services.AddControllers () ;

services.AddDistributedMemoryCache () ;
services.AddSession (options => options.IdleTimeout = TimeSpan.FromMinutes (30));

(continues on next page)

2.12. Snapshot 67

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// Get a connection string for your server data source
var connectionString = Configuration.GetSection ("ConnectionStrings") [
—"DefaultConnection"];

// Set the web server Options
var options = new SyncOptions ()
{
SnapshotsDirectory = Path.Combine (
Environment.GetFolderPath (Environment.SpecialFolder.UserProfile),
"Snapshots™")
}i

// Create the setup used for your sync process

var tables = new string[] {"ProductCategory",
"ProductDescription", "ProductModel",
"Product", "ProductModelProductDescription",
"Address", "Customer", "CustomerAddress",
"SalesOrderHeader", "SalesOrderDetail" };

var setup = new SyncSetup (tables);

// add a SqglSyncProvider acting as the server hub
services.AddSyncServer<SglSyncProvider> (connectionString, setup, options);

// This method gets called by the runtime. Use this method to configure the HTTP_,
—request pipeline.
public void Configure (IApplicationBuilder app, IWebHostEnvironment env)
{
if (env.IsDevelopment ())
app.UseDeveloperExceptionPage () ;

app.UseHttpsRedirection () ;
app.UseRouting () ;
app.UseSession () ;
app.UseEndpoints (endpoints =>

endpoints.MapControllers();

2.12.3 Client side

On the client side, you don’t have anything to do, just a normal new sync processus:

var s = await agent.SynchronizeAsync (progress) ;

Here is an output of new client coming with a new client database :

BeginSession 14:00:22.651

ScopelLoading 14:00:22.790 Id:b3d33500-ee06-427a-bccc-7518a9dfec93 LastSync:
—LastSyncDuration:0

TableSchemaApplied 14:00:26.95 TableName: ProductCategory Provision:All

(continues on next page)

68 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

TableSchemaApplied 14:00:26.234 TableName: ProductModel Provision:All
TableSchemaApplied 14:00:26.415 TableName: Product Provision:All
TableSchemaApplied 14:00:26.466 TableName: Address Provision:All
TableSchemaApplied 14:00:26.578 TableName: Customer Provision:All
TableSchemaApplied 14:00:26.629 TableName: CustomerAddress Provision:All
TableSchemaApplied 14:00:26.777 TableName: SalesOrderHeader Provision:All
TableSchemaApplied 14:00:26.830 TableName: SalesOrderDetail Provision:All
SchemaApplied 14:00:26.831 Tables count:8 Provision:All

TableChangesApplied 14:00:28.101 ProductCategory State:Modified Applied:41
—Failed:0

TableChangesApplied 14:00:28.252 ProductModel State:Modified Applied:128
—Failed:0

TableChangesApplied 14:00:28.449 Product State:Modified Applied:201 Failed:0
TableChangesApplied 14:00:28.535 Product State:Modified Applied:295 Failed:0
TableChangesApplied 14:00:28.686 Address State:Modified Applied:450 Failed:0
TableChangesApplied 14:00:28.874 Customer State:Modified Applied:847 Failed:0
TableChangesApplied 14:00:29.28 CustomerAddress State:Modified Applied:417_
—Failed:0

TableChangesApplied 14:00:29.165 SalesOrderHeader State:Modified Applied:32
—Failed:0

TableChangesApplied 14:00:29.383 SalesOrderDetail State:Modified Applied:542
—Failed:0

DatabaseChangesApplied 14:00:29.385 Changes applied on database Client: Applied:
2752 Failed: 0

ScopeSaved 14:00:29.455 Id:b3d33500-ee06-427a-bccc-7518a9dfec93 LastSync:04/
—02/2020 13:00:29 LastSyncDuration:68091840

EndSession 14:00:29.457

BeginSession 14:00:29.460

ScopelLoading 14:00:29.466 Id:b3d33500-ee06-427a-bccc-7518a9dfec93 LastSync:04/
—02/2020 13:00:29 LastSyncDuration:68091840

TableChangesSelected 14:00:29.481 ProductCategory Upserts:0 Deletes:0_
—TotalChanges:0

TableChangesSelected 14:00:29.491 ProductModel Upserts:0 Deletes:0
—TotalChanges:0

TableChangesSelected 14:00:29.504 Product Upserts:0 Deletes:0 TotalChanges:O0
TableChangesSelected 14:00:29.514 Address Upserts:0 Deletes:0 TotalChanges:0
TableChangesSelected 14:00:29.524 Customer Upserts:0 Deletes:0 TotalChanges:0
TableChangesSelected 14:00:29.535 CustomerAddress Upserts:0 Deletes:0_
—TotalChanges:0

TableChangesSelected 14:00:29.544 SalesOrderHeader Upserts:0 Deletes: 0,
—TotalChanges:0

TableChangesSelected 14:00:29.553 SalesOrderDetail Upserts:0 Deletes:0
—TotalChanges:0

TableChangesApplied 14:00:29.722 ProductCategory State:Modified Applied:1_
—Failed:0

DatabaseChangesApplied 14:00:29.732 Changes applied on database Client: Applied:
—1 Failed: O

ScopeSaved 14:00:29.772 Id:b3d33500-ee06-427a-bccc-7518a9dfec93 LastSync:04/
—02/2020 13:00:29 LastSyncDuration:71205855

EndSession 14:00:29.773

Synchronization done.
Total changes downloaded: 2753
Total changes uploaded: 0
Total conflicts: 0
Total duration :0:0:7.120

As you can see, we have basically 2 Sync in a row.

2.12. Snapshot 69

Dotmim.Sync, Release 0.9.5

* First one get the schema, and apply all the batches from the snapshot

» Second one get all the rows added / deleted / modified from the snapshot TimeStamp T—1 and the last server
TimeStamp T (in our sample just one ProductCategory)

2.13 Setup & Options

You can configure your synchronization model with some parameters, available through the SyncSetup and
SyncOptions objects :

What'’s the differences between SyncSetup and SyncOptions ?

* SyncSetup contains all the parameters related to your schema, and shared between the server and all the
clients.

— In Http mode, the SyncSetup parameters are set by the Server and will be send to all Clients.

* SyncOptions contains all the parameters not shared between the server and all the clients.

2.13.1 SyncSetup

If we look at the SyncSetup object, we mainly have properties about your synced tables schema:

public class SyncSetup
{
/// <summary>
/// Gets or Sets the scope name
/// </summary>
public string ScopeName { get; set; }

/// <summary>
/// Gets or Sets all the synced tables
/// </summary>
public SetupTables Tables { get; set; }

/// <summary>

/// Specify all filters for each table
/// </summary>

public SetupFilters Filters { get; set; }

/// <summary>

/// Specify a prefix for naming stored procedure. Default is empty string
/// </summary>

public string StoredProceduresPrefix { get; set; }

/// <summary>

/// Specify a suffix for naming stored procedures. Default is empty string
/// </summary>

public string StoredProceduresSuffix { get; set; }

/// <summary>

/// Specify a prefix for naming stored procedure. Default is empty string
/// </summary>

public string TriggersPrefix { get; set; }

/// <summary>

(continues on next page)

70 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

/// Specify a suffix for naming stored procedures. Default is empty string
/// </summary>
public string TriggersSuffix { get; set; }

/// <summary>

/// Specify a prefix for naming tracking tables. Default is empty string
/// </summary>

public string TrackingTablesPrefix { get; set; }

/// <summary>
/// Specify a suffix for naming tracking tables.
/// </summary>
public string TrackingTablesSuffix { get; set; }

The SyncAgent instance creates a SyncSetup instance automatically when initialized.

For instance, these two instructions are equivalent:

var tables = new string[] {"ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader", "SalesOrderDetail" }
7

var agent = new SyncAgent (clientProvider, serverProvider, tables);

var tables = new string[] {"ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader",
—"SalesOrderDetail" };

// Creating a sync setup object
var setup = new SyncSetup (tables);
var agent = new SyncAgent (clientProvider, serverProvider, setup);

The main advantage of using SyncSetup is you can personalize what you want from your database:

Schema

Note: The schema feature is only avaialable for SQL Server

One great feature in SQL Server is the schema option.
You can configure your sync tables with schema if you target the SglSyncProvider.
You have two way to configure schemas:

* Directly during the tables declaration, as string.

var tables = new string[] { "SalesLT.ProductCategory", "SalesLT.ProductModel",

—"SalesLT.Product",
"Address", "Customer", "CustomerAddress"};

SyncAgent agent = new SyncAgent (clientProvider, serverProvider, tables);

* On each table, from the SyncSetup setup instance.

2.13. Setup & Options 4

https://technet.microsoft.com/en-us/library/dd283095%28v=sql.100%29.aspx?f=255

Dotmim.Sync, Release 0.9.5

var tables = new string[] { "ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress"};

SyncAgent agent = new SyncAgent (clientProvider, serverProvider, tables);
agent.Setup.Tables["ProductCategory"].SchemaName = "SalesLt";
agent.Setup.Tables["ProductModel"].SchemaName = "SalesLt";
agent.Setup.Tables["Product"].SchemaName = "SalesLt";

Warning: Schemas are not replicated if you target SqgliteSyncProvider or MySglSyncProvider as
client providers.

Filtering Columns

Once your SyncSetup instance is created (with your tables list), you can specify the columns you want to sync:

var tables = new string[] {"ProductCategory", "ProductModel", "Product",
"Address", "Customer", "CustomerAddress", "SalesOrderHeader",
—"SalesOrderDetail" };

// Creating a sync setup object
var setup = new SyncSetup (tables);

// Filter columns
setup.Tables["Customer"].Columns.AddRange (new string[] {
"CustomerID", "EmployeeID", "NameStyle", "FirstName", "LastName" });

setup.Tables["Address"] .Columns.AddRange (new string[] {
"AddressID", "AddressLinel", "City", "PostalCode" });

For instance, table Cust omer and Address won’t sync all their columns, but only those specified.

Filtering Rows

From your SyncSetup instance, you can also specify a SetupFilter on each table, allowing you to filter rows.

setup.Filters.Add("Customer", "CustomerID");
setup.Filters.Add ("CustomerAddress", "CustomerID");
setup.Filters.Add("SalesOrderHeader", "CustomerID", "SalesLT");

Tables Customer, CustomerAddress and SalesLT.SalesOrderHeader will filter their rows, based on the
CustomerID column value.

Note: Filtering rows is a quite complex thing. A full chapter is dedicated to rows filtering: Filters

Database configuration

You can personalize how are created the tracking tables, triggers and stored procedures tables in your database:

72 Chapter 2. Need Help

Filters.html

Dotmim.Sync, Release 0.9.5

var setup = new SyncSetup (tables)

{
StoredProceduresPrefix = "s",
StoredProceduresSuffix = "",
TrackingTablesPrefix = "t",
TrackingTablesSuffix = "",
TriggersPrefix = "",
TriggersSuffix = "t"

i

= i Server
Database Diagrams

= Tables
Systern Tables
FileTables
External Tables
BH dbo.Address
BH dbo.Customer
A dbo.CustomerAddress
B dbo.Product
BR dbo.ProductCategory
BH dbo.Producthodel
A dbo.SalesOrderDetail
B dbo.SalesOrderHeader
EH dbo.tAddress
BH dbo.tCustomer
A dbotCustormerfddress
B dbo.tProduct
B dbo.tProductCategory
BH dbo.tProductModel
B dbo.tSalesOrderDetail
B dbo.tSalesCrderHeader
FH dbo.tscopeinfo

I] O O = - 3 - 3

HTTP mode

In a more realistic scenario, you will probably have a web proxy in front of your Server database.

You must provide your configuration values on the server side, not on the client side, since the server side will always
override the values from the client.

As we saw in the Web chapter, we are using the ASP.NET Dependency injection system to create our Server
remote provider.

It’s the best place to setup your sync configuration:

public void ConfigureServices (IServiceCollection services)

{

services.AddControllers();

(continues on next page)

2.13. Setup & Options 73

Web.html

Dotmim.Sync, Release 0.9.5

(continued from previous page)

services.AddDistributedMemoryCache () ;
services.AddSession (options => options.IdleTimeout = TimeSpan.FromMinutes (30));

// Get a connection string for your server data source
var connectionString = Configuration.GetSection ("ConnectionStrings") [
—"DefaultConnection"];

// Create the setup used for your sync process

var tables = new string[] {"ProductCategory",
"ProductDescription", "ProductModel",
"Product", "ProductModelProductDescription",
"Address", "Customer", "CustomerAddress",
"SalesOrderHeader", "SalesOrderDetail" };

var setup = new SyncSetup (tables)

{
StoredProceduresPrefix = "s",
StoredProceduresSuffix = "",
TrackingTablesPrefix = "t",
TrackingTablesSuffix = "",
TriggersPrefix = "",
TriggersSuffix = "t"

}i

// add a SglSyncProvider acting as the server hub
services.AddSyncServer<SglSyncProvider> (connectionString, setup);

// This method gets called by the runtime. Use this method to configure the HTTP_
—request pipeline.
public void Configure (IApplicationBuilder app, IWebHostEnvironment env)
{
if (env.IsDevelopment ())
app.UseDeveloperExceptionPage () ;

app.UseHttpsRedirection();

app.UseRouting () ;

app.UseSession();

app.UseEndpoints (endpoints => endpoints.MapControllers());

Warning: The prefix and suffix properties, are not shared betweeen server and client.

2.13.2 SyncOptions

On the other side, SyncOptions can be customized on server and on client, with their own different values.
For instance, we can have a different value for the the BatchDirectory (representing the tmp directory when
batch is enabled) on server and on client.

74 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

/77
/77
/77
/77

<summary>

This class determines all the options you can set on Client & Server,
that could potentially be different

</summary>

public class SyncOptions

{

/// <summary>

/// Gets or Sets the directory used for batch mode.
/// Default value is [User Temp Path]/[DotmimSync]
/// </summary>

public string BatchDirectory { get; set; }

/// <summary>

/// Gets or Sets the directory where snapshots are stored.

/// This value could be overwritten by server is used in an http mode
/// </summary>

public string SnapshotsDirectory { get; set; }

/// <summary>
/// Gets or Sets the size used (approximatively in kb, depending on the_,

—~serializer)

/// for each batch file, in batch mode.
/// Default is 0 (no batch mode)

/// </summary>

public int BatchSize { get; set; }

/// <summary>

/// Gets or Sets the log level for sync operations. Default value is false.
/// </summary>

public bool UseVerboseErrors { get; set; }

/// <summary>
/// Gets or Sets if we should use the bulk operations. Default is true.
/// If provider does not support bulk operations, this option is overrided to_

—~false.

/// </summary>
public bool UseBulkOperations { get; set; } = true;

/// <summary>

/// Gets or Sets if we should clean tracking table metadatas.
/// </summary>

public bool CleanMetadatas { get; set; } = true;

/// <summary>

/// Gets or Sets if we should cleaning tmp dir files after sync.
/// </summary>

public bool CleanFolder { get; set; } = true;

/// <summary>

/// Gets or Sets if we should disable constraints before making apply changes
/// Default value is true

/// </summary>

public bool DisableConstraintsOnApplyChanges { get; set; } = true;

/// <summary>
/// Gets or Sets the scope_info table name. Default 1is scope_info
/// On the server side, server scope table is prefixed with _server

(continues on next page)

2.13. Setup & Options 75

Dotmim.Sync, Release 0.9.5

(continued from previous page)

/// and history table with _history

/// </summary>
public string ScopeInfoTableName { get; set; }

/// <summary>

/// Gets or Sets the default conflict resolution policy. This value could,,
—potentially

/// be ovewritten and replaced by the server

/// </summary>

public ConflictResolutionPolicy ConflictResolutionPolicy { get; set; }

/// <summary>

/// Gets or Sets the default logger used for logging purpose
/// </summary>

public ILogger Logger { get; set; }

Note: If nothing is supplied when creating a new SyncAgent instance, a default SyncOptions is created with
default values.

SyncOptions has some useful methods, you can rely on:

/// <summary>

/// Get the default Batch directory full path ([User Temp Path]/[DotmimSync])
/// </summary>

public static string GetDefaultUserBatchDiretory ()

/// <summary>

/// Get the default user tmp folder

/// </summary>

public static string GetDefaultUserTempPath ()

/// <summary>

/// Get the default sync tmp folder name (usually 'DotmimSync')
/// </summary>

public static string GetDefaultUserBatchDirectoryName ()

Batch mode

Batch mode is an important options if you have to deal with over sized sync changes.

If you have a lot of changes to download from your server (or changes to upload from your client), maybe you don’t
want to download / upload one big change object, stored in memory.

Even more, when you’re in a web environment, you don’t want to make a web request with everything inside of it,
which could be way too heavy !

The BatchSize property from the SyncOptions object allows you to define the maximum size of any payload:

var clientOptions = new SyncOptions { BatchSize = 500 };

76 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

Warning:

Be careful, the batch size value is not a kb maximum size.
The maximum size depends on compression, converters and so on. . .
Test and adjust the BatchSize value regarding your result and expectation.

Example

Hint: You will find the complete sample here : Batch size sample

As an example, we make an insert of 100000 product category items in the server database, before making our sync:

Insert into ProductCategory (Name)
Select SUBSTRING (CONVERT (varchar (255), NEWID()), 0, 7)
Go 100000

By default, here is a sync process, where we download everything from the server, without any BatchSize option:

var agent = new SyncAgent (clientProvider, proxyClientProvider);
await agent.SynchronizeAsync();

Here is the fiddler trace:

localhost: 50333/ 5814967

|POST / HTTP/1.1
Chent
Accept-Encoding: gzip, defiate

| Transformer Headers TextView Syntaxiiew ImageView HexView

Response body: 16 257 808 bytes.

[[] chunked Transfer-Encoding Help...

HTTP Compression
(@) None
(@) [Use Zopfii to GZIF/DEFLATE
() DEFLATE
[@]:Fii]

) Brotli

As you can see, the fiddler trace shows a http response around 16 Mb (approximatively 6 Mb compressed).
It could be even more, depending on the size of the selected changes from the server.

Here is the same sync, with the batch mode enabled:

/) e

// Client side

/)

var clientOptions = new SyncOptions { BatchSize = 500 };

var agent = new SyncAgent (clientProvider, proxyClientProvider, clientOptions);
var progress = new SynchronousProgress<ProgressArgs> (pa =>
Console.WritelLine (String.Format ("{0} —{1}\t {2}",
pa.Context.SessionId, pa.Context.SyncStage, pa.Message));
var s = await agent.SynchronizeAsync (progress) ;
Console.WriteLine(s);

2.13. Setup & Options 77

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/BatchSize

Dotmim.Sync, Release 0.9.5

Hint: The client side dictates the batch size. The server is always adapting its payload, regarding the client ask.

Here is the fiddler trace:

POST / HTTP/1.1

kecahost:64049

]. M0 HITP mz:swﬁ 171613 o

Ep 145 200 HTTP locabhostie4049 [171714 Accept-Encoding: gzip, deflate

T 196 200 HITP locabhosti6a043 [171602

D147 00 HITP locabhostis 4049 | 171478 [Transformer | Headers | Textiiew | Syntaxiew | Imageliew | Hexiew
Bim m Wm lehmes | riee0 Response body: 457 044 bytes.

E10 200 HTP locahost:64049 / 171575 [] Chunked Transfer-Encoding Help...
T 151 200 HTTP locahost:64043 [171748

152 200 HITP locabost:s4049 | 171756 HTTP Compression

T 133 200 HTTP kcahosti64048 [171673 (@) None

B+ 0 WP b | 760 Oz T ep———

w156 200 HITP locahost:64049 | 171720 O DEFLATE

ap 157 00 HITP locahost:64049 171570 OEZlP'Z

Hiss 200 HITP locahostis 4048 | 172028 O Brotii

By 159 00 HITP locabost:64043 [172 511

B 160 00 HTTP locahost:64049 171901

T 161 200 HTTP locahost:64043 [171918

B 162 00 HITP locahost:64049 169 124

And the progress of the sync process:

974£8be9-332d-4d6d-b881-7784b63b4bb7 - BeginSession 10:53:38.762 Session,
—I1d:974£8be9-332d-4d6d-b881-7784b63b4bb7

974£8be9-332d-4d6d-b881-7784b63b4bb7 - Scopeloaded 10:53:39.385 [Client]
— [DefaultScope] [Version] Last sync: Last sync duration:0:0:0.0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - Provisioned 10:53:42.224 [Client]
—tables count:8 provision:Table, TrackingTable, StoredProcedures, Triggers
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesSelected 10:53:42.243 [Client]
—upserts:0 deletes:0 total:0

974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:53:55.133 [Client]
— [ProductCategory] Modified applied:5171 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:53:55.702 [Client]
— [ProductCategory] Modified applied:10343 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:53:56.297 [Client]
— [ProductCategory] Modified applied:15515 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:53:56.891 [Client]
— [ProductCategory] Modified applied:20687 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:53:57.620 [Client]
— [ProductCategory] Modified applied:25859 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:53:58.280 [Client]
— [ProductCategory] Modified applied:31031 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:53:58.971 [Client]
— [ProductCategory] Modified applied:36203 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:53:59.682 [Client]
— [ProductCategory] Modified applied:41375 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:00.420 [Client]
— [ProductCategory] Modified applied:46547 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:01.169 [Client]
— [ProductCategory] Modified applied:51719 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:01.940 [Client]
— [ProductCategory] Modified applied:56891 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:02.657 [Client]
— [ProductCategory] Modified applied:62063 resolved conflicts:0
974f8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:03.432 [Client]
— [ProductCategory] Modified applied:67235 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:04.192 [Client]

— [ProductCategory] Modified applied:72407 resolved conflicts:0

(continues on next page)

78 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:05.82 [Client]
— [ProductCategory] Modified applied:77579 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:05.930 [Client]
— [ProductCategory] Modified applied:82751 resolved conflicts:0
974f8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:06.787 [Client]
— [ProductCategory] Modified applied:87923 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:07.672 [Client]
— [ProductCategory] Modified applied:93095 resolved conflicts:0
974£f8be9-332d-4d6d-b881-7784b63b4dbb7 - ChangesApplying 10:54:08.553 [Client]
— [ProductCategory] Modified applied:98267 resolved conflicts:0
974f8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:08.972 [Client]
— [ProductCategory] Modified applied:100041 resolved conflicts:0
974f8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:09.113 [Client]
— [ProductModel] Modified applied:128 resolved conflicts:0
974£f8be9-332d-4d6d-b881-7784b63b4dbb7 - ChangesApplying 10:54:09.183 [Client]
— [Product] Modified applied:198 resolved conflicts:0
974f8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:09.208 [Client]
— [Product] Modified applied:295 resolved conflicts:0
974£f8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:09.255 [Client]
— [Address] Modified applied:450 resolved conflicts:0
974£f8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:09.329 [Client]
— [Customer] Modified applied:847 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:09.375 [Client]
— [CustomerAddress] Modified applied:417 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:09.414 [Client]
— [SalesOrderHeader] Modified applied:32 resolved conflicts:0
974£f8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplying 10:54:09.476 [Client]
— [SalesOrderDetail] Modified applied:542 resolved conflicts:0
974£8be9-332d-4d6d-b881-7784b63b4bb7 - ChangesApplied 10:54:09.636 [Client]
—applied:102752 resolved conflicts:0

974f8be9-332d-4d6d-b881-7784b63b4bb7 - EndSession 10:54:09.638 Session

—I1d:974£8be9-332d-4d6d-b881-7784b63b4bb7
Synchronization done.
Total changes uploaded: 0
Total changes downloaded: 102752
Total changes applied: 102752
Total resolved conflicts: 0
Total duration :0:0:30.886

As you can see, most of the product category items come from different batch requests.

UseBulkOperations

This option is only available when using SQL. Server providers.

It allows you to use bulk operations from within SQL Server using Table Value Parameters as input to the stored
procedures.

When using UseBulkOperations, each table will have new stored procedures and one table value parameter:
 Stored procedure CustomerAddress_bulkdelete
e Stored procedure CustomerAddress_bulkupdate
 Table value parameter Customer_BulkType

Using this option will increase your performances, so do not hesitate to use it !

2.13. Setup & Options 79

Dotmim.Sync, Release 0.9.5

CleanMetadatas

The CleanMetadatas option allows you to clean the _t racking tables from your client databases.
Once enabled, the client database will delete all metadatas from the tracking tables, after every successful sync.
Be careful, the delete method will:

* Work only if client download something from server. If there is no changes downloaded and applied on the
client, DeleteMetadasAsync is not called

* Work only on T-2 metadatas. To be more secure, the T-1 values stays in the tracking tables.

You can also manually delete metadatas from both server or client, using the method DeleteMetadatasAsync,
available from both LocalOrchestrator and RemoteOrchestrator:

var clientProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString (clientDbName)) ;

var localOrchestrator = new LocalOrchestrator(clientProvider) ;
await localOrchestrator.DeleteMetadatasAsync () ;

Note: If you're using SglSyncChangeTrackingProvider, the metadatas cleansing is automatically handled
by the change tracking feature.

DisableConstraintsOnApplyChanges

The DisableConstraintsOnApplyChanges will disable all constraint on your database, before the sync pro-
cess is launched, and will be enabled after. Use it if you’re not sure of the table orders.

ScopelnfoTableName

This option allows you to customize the scope info table name. Default is scope_info.

On the server side, server scope table is prefixed with _server and history table with _history
ConflictResolutionPolicy

Define the default conflict resolution policy. See more here : Conflict

2.14 Provision, Deprovision & Migration

2.14.1 Overview

Since your sync architecture will evolve over the time, you may need to update the sync generated code as well.

Regarding the DMS architecture, we have two situations, the first one is automatically handled by DMS and the other
one, not.
Fortunately, DMS provides some useful methods for all these scenario.

We have to distinguish 2 mains reasons to make an update of your databases schemas:

» First, you are modifying your sync setup, represented by a * SyncSetup instance.

80 Chapter 2. Need Help

Conflict.html

Dotmim.Sync, Release 0.9.5

— Adding or removing a table, modifying prefix or suffix used in stored procedure or triggers..

* Second, you are modifying your schema, your own tables, by adding or removing a column.

In the first case, DMS will be able to compare the existing SyncSetup saved in one DMS table, with the new one
you are providing.
Once DMS concludes there is a difference between the old and the new setup, it will run an automatic migration.

On the other hand, the second case is more tricky, since there is no way for DMS to see the difference between the
old table schema and the new one.

It will be your responsability to deprovision and then provision again all the DMS infrastructure relative to this table.

Note:
¢ Editing a SyncSetup setup: Automatic migration handled by DMS

« Editing a table schema: Your responsability to deprovision then provision again the DMS infrastructure.

2.14.2 Migration

Firstly, let’s see a common scenario that are handled automatically by DMS.
As we said in the overview, the migration occurs when you are modifying your setup instance.

For instance going from this:

var setup = new SyncSetup (new string[] { "ProductCategory", "Product" })

to this:

var setup = new SyncSetup (new string[] { "ProductCategory", "Product",
—"ProductDescription" })

DMS will automaticaly migrate your whole old setup to match your new setup.

This migration is handled for you automatically, once you’ve called the method await agent.
SynchronizeAsync () ;

Basically, DMS will make a comparison between the last valid Setup:
¢ Stored in the scope_info table on the local database
¢ Stored in the scope_info_server for the server side database

And then will merge the databases, adding (or removing) tracking tables, stored procedures, triggers and tables if
needed

Adding a table

Going from this:

2.14. Provision, Deprovision & Migration 81

Dotmim.Sync, Release 0.9.5

var setup = new SyncSetup (new string[] { "ProductCategory", "Product" })

to this:

var setup = new SyncSetup (new string[] { "ProductCategory", "Product",
—"ProductDescription" })

Will generate:
¢ A new table ProductDescription on the client
* A new tracking table ProductDescription_tracking on the client and the server
* New stored procedures on both databases

¢ New triggers on both databases

Editing the prefix or suffix

Going from this:

var setup = new SyncSetup (new string[] { "ProductCategory", "Product" })

to this:

var setup = new SyncSetup (new string[] { "ProductCategory", "Product" })

{

TrackingTablesPrefix ",
TrackingTablesSuffix = "",
}i

Will generate:
* A renaming of the trackings tables on both databases

AND because renaming the trackings tables will have an impact on triggers and stored proc ..
¢ A drop / create of all stored procedures

* A drop / create of all triggers

Orchestrators methods

First of all, if you are just using agent . SynchronizeAsync (), everything will be handled automatically.

But you can use the orchestrators to do the job. It will allow you to migrate your setup, without having to make a
synchronization.

You have one new method on both orchestrators:

On LocalOrchestrator:

public virtual async Task MigrationAsync (SyncSetup oldSetup, SyncSet schema)

Basically, you need the old setup to migrate o1dSetup, and the new schema.

You don’t need the new Setup because you have already add it when you have initiliaed your
LocalOrchestrator instance (it’s a mandatory argument in the constructor).

82 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

Hint: Why do you need the schema ? If you are adding a new table, which is potentially not present locally, we
need the schema from the server side, to get the new table structure.

Here is an example, using this method on your local database:

// adding 2 new tables
var newSetup = new SyncSetup (new string[] { "ProductCategory", "Product",
"ProdutModel", "ProductDescription" });

// creaete a local orchestrator
var localOrchestrator = new LocalOrchestrator (clientProvider, options, setup);

// create remote orchestrator to get the schema for the 2 new tables to add
var remoteOrchestrator = new RemoteOrchestrator (serverProvider, options, setup);

// If you are on a web sync architecture, you can use the WebRemoteOrchestrator as,
—well:
// var remoteOrchestrator = new WebRemoteOrchestrator (servicelUri)

// get the old setup
var scopelnfo = await localOrchestrator.GetClientScopeAsync () ;
var oldSetup = scopelInfo.Setup;

// get the schema from server side
var schema = await remoteOrchestrator.GetSchemaAsync () ;

// Migrating the old setup to the new one, using the schema if needed
await localOrchestrator.MigrationAsync (oldSetup, schema);

On RemoteOrchestrator:

public virtual async Task MigrationAsync (SyncSetup oldSetup)

Basically, it’s the same method as on LocalOrchestrator but we don’t need to pass a schema, since we are on the server
side, and we know how to get the schema :)

The same example will become:

// adding 2 new tables
var newSetup = new SyncSetup (new string[] { "ProductCategory", "Product",
"ProdutModel", "ProductDescription" });

// remote orchestrator to get the schema for the 2 new tables to add
var remoteOrchestrator = new RemoteOrchestrator (serverProvider, options, setup);

// get the old setup
var serverScopelInfo = await remoteOrchestrator.GetServerScopeAsync();
var oldServerSetup = serverScopelnfo.Setup;

// Migrating the old setup to the new one, using the schema if needed
await remoteOrchestrator.MigrationAsync (oldServerSetup);

For instance, the RemoteOrchestrator MigrationAsync could be really useful if you want to migrate your
server database, when configuring as HTTP mode.

Once migrated, all new clients, will get the new setup from the server, and will apply locally the migration, automati-
cally.

2.14. Provision, Deprovision & Migration 83

Dotmim.Sync, Release 0.9.5

What Setup migration does not do !
Be careful, the migration stuff will only allows you to migrate your setup (adding or removing tables from your sync,
renaming stored proc and soon...)
You can’t use it to migrate your own schema database !!
Well, it could work if:
* You are adding a new table : Quite easy, just add this table to your SyncSetup and you’re done.
* You are removing a table: Once again, easy, remove it from your SyncSetup, and you’re good to go.
But, it won’t work if:

* You are removing or adding a column from a table on your server: You can’t use this technic to migrate your
clients database.

DMS won’t be able to make an Alter table toadd/remove columns.
Too complicated to handle, too much possibilities and scenario.

If you have to deal with this kind of situation, the best solution is to handle this migration by yourself using
ProvisionAsync and DeprovisionAsync methods.

Last timestamp sync

What happens if you’re adding a new table ?
What will happen on the next sync ?

Well as we said the new table will be provisioned (stored proc, triggers and tracking table) on both databases (server /
client) and the table will be created on the client.

Then the DMS framework will make a sync
And this sync will get all the rows from the server side that have changed since the last sucessful sync

And your new table on the client database has ... NO ROWS !!!

Because no rows have been marked as changed in the server tracking table since the last sync process.
Indeed, we’ve just created this tracking table on the server !!

So, if you’re adding a new table, you MUST do a full sync, calling the SynchronizeAsync () method with a
SyncType.Reinitialize or SyncType.ReinitializeWithUpload parameter.

Adding a new table is not trivial.
Hopefully if you are using snapshots it should not be too heavy for your server database :)

84 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

Forcing Reinitialize sync type from server side.

As we saw, it could be useful to force a reinitialize from a client, to get all the needed data.

Unfortunatelly, you should have a special routine from the client side, to launch the synchronization with a
SynchronizeAsync (SyntType.Reinitialize), like an admin button or whatever.

Fortunatelly, using an interceptor, from the server side, you are able to force the reinitialization from the client.

On the server side, from your controller, just modify the request SyncContext with the correct value, like this:

[HttpPost]
public async Task Post ()
{

// override sync type to force a reinitialization from a particular client
orchestrator.OnServerScopeloaded (sla =>

{

// ClientId represents one client. If you want to reinitialize ALL clients,
// just remove this condition
if (sla.Context.ClientScopelId == clientId)
{
sla.Context.SyncType = SyncType.Reinitialize;

1)

// handle request
await orchestrator.HandleRequestAsync (this.HttpContext) ;

2.14.3 Provision / Deprovision

The ProvisionAsync and DeprovisionAsync methods are used internally by DMS
For instance, during the first sync, DMS will provision everything, on the server side and on the client side.
When you launch for the first time a sync process, DMS will:

¢ [Server Side]: Get the database schema from the server database.

* [Server Side]: Create Stored procedures, triggers and tracking tables.

[Client Side]: Fetch the server schema.

[Client Side]: Create tables on the client database, if needed.

[Client Side]: Create Stored procedures, triggers and tracking tables

Note: If you’re using the SglSyncChangeTrackingProvider, DMS will skip the creation of triggers and
tracking tables, relying on the Change Tracking feature from SQL Server.

Basically, all these steps are managed by the RemoteOrchestrator on the server side, and by the
LocalOrchestrator on the client side.

All the methods used to provision and deprovision tables are available from both the LocalOrchestrator and
RemoteOrchestrator instances.

2.14. Provision, Deprovision & Migration 85

Dotmim.Sync, Release 0.9.5

public async Task<SyncSet> ProvisionAsync (SyncProvision provision)
public async Task<SyncSet> ProvisionAsync (SyncSet schema, SyncProvision provision)

public async Task DeprovisionAsync (SyncProvision provision)
public virtual async Task DeprovisionAsync (SyncSet schema, SyncProvision provision)

Let’s start with a basic example, where you have a simple database containing two tables Customers and Region:

@ Morthwind
0 Database Diagrams
Tables
System Tables
FileTables
External Tables
Graph Tables
ER dbo.Customers
FR dbo.Region

And here the most straightforward code to be able to sync a client db :

SglSyncProvider serverProvider = new SglSyncProvider (GetDatabaseConnectionString(
—"Northwind")) ;
SglSyncProvider clientProvider = new SglSyncProvider (GetDatabaseConnectionString ("NW1

="));

SyncAgent agent = new SyncAgent (clientProvider, serverProvider, new string[] {
"Customers", "Region"});

var syncContext = await agent.SynchronizeAsync();

Console.WritelLine (syncContext) ;

Once your sync process is finished, you will have a full configured database :

86 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

B E Morthwind

#
=

£7]

O =

=
[
[#]

=]

=]

Database Diagrams
Tables
System Tables
FileTables
External Tables
Graph Tables
BR dbo.Customers
Columns
Keys
Constraints
= Triggers
%] Customers_delete_trigger
[] Customers_insert_trigger

= =

[+

(%] Customers_update_trigger

+ Indexes
0 Statistics
BB dbo.Customers_tracking
BH dbo.Region
BH dbo.Region_tracking
BH dbo.scope_info
Views
External Resources
Synonyms
Programmability
Stored Procedures

System Stored Procedures
o dbo.Customers_bulkdelete
dbo.Customers_bulkinsert
dbo.Customers_bulkupdate
[dbo.Customers_delete
[dbo.Customers_deletemetadata
[E dbo.Customers_insert
dbo.Customers_insertmetadata
dbo.Customers_reset
7 E dbo.Customers_selectchanges
[dbo.Customers_selectrow
[dbo.Customers_update
H dbo.Customers_updatemetadata

[] [3] [

E B E

DMS has provisioned:

* One tracking table per table from your setup.

* Three triggers on each table.

* Several stored procedures for each table.

2.14. Provision, Deprovision & Migration

87

Dotmim.Sync, Release 0.9.5

Provision
In some circumstances, you may want to provision manually your database, on the server using a remote orchestrator,
or on the client side using a local orchestrator.

* If you have a really big database, the provision step could be really long, so it could be better to provision the
server side before any sync process happens.

« If you have to modify your schema, you will have to deprovision, edit your schema and finally provision again
your database.

That’s why DMS exposes several methods to let you control how, and when, you want to provision and deprovision
your database.

Each orchestrator has two main methods, basically:

ProvisionAsync (SyncSet schema, SyncProvision provision)
DeprovisionAsync (SyncSet schema, SyncProvision provision)

The SyncProvision enum parameter lets you decide which kind of objects (tables, stored proc, triggers or tracking
tables) you will provision on your target database.

[Flags]

public enum SyncProvision

{
Table = 1,
TrackingTable = 2,
StoredProcedures =
Triggers = 8,
ClientScope = 16,
ServerScope = 32,
ServerHistoryScope = 64,

4,

Warning: Each time you are provisioning or deprovisioning your local / server database, do not forget to update
the scope tables:

* scope_info table from local orchestrator using the WriteClient ScopeAsync method.
« scope_info_server table from remote orchestrator using the WriteServerScopeAsync method.

It’s important to stay synchronized between your actual database schema, and the metadata contained in the scope
tables.

The remote (server side) provisioning is quite simple, since the schema is already there.

But the local (client side) provisioning could a little bit more tricky since we may miss tables.
In that particular case, we will rely on the schema returned by the remote orchestrator.

Hint: You will find this complete sample here : Provision & Deprovision sample

Provisioning from server side, using a remote orchestrator:

88 Chapter 2. Need Help

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/ProvisionDeprovision

Dotmim.Sync, Release 0.9.5

var serverProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString (serverDbName)) ;

// Create standard Setup and Options
var setup = new SyncSetup (new string[] { "Address", "Customer", "CustomerAddress" });
var options = new SyncOptions();

/) e
// Server side

/)

// This method is useful if you want to provision by yourself the server database
// You will need to

// — Create a remote orchestrator with the correct setup to create

// - Provision everything

// Create a server orchestrator used to Deprovision and Provision only table Address
var remoteOrchestrator = new RemoteOrchestrator (serverProvider, options, setup);

// Provision everything needed (sp, triggers, tracking tables)
// Internally provision will fectch the schema a will return it to the caller.
var newSchema = await remoteOrchestrator.ProvisionAsync () ;

Provision on the client side is quite similar, despite the fact we will rely on the server schema to create any missing
table.

// Create 2 Sql Sync providers

var serverProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString (serverDbName)) ;

var clientProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString(clientDbName)) ;

// Create standard Setup and Options
var setup = new SyncSetup (new string[] { "Address", "Customer", "CustomerAddress" });
var options = new SyncOptions{();

S e
// Client side
e

// This method is useful if you want to provision by yourself the client database
// You will need to

// — Create a local orchestrator with the correct setup to provision

// — Get the schema from the server side using a RemoteOrchestrator or a_,
—WebRemoteOrchestrator

// — Provision everything locally

// Create a local orchestrator used to provision everything locally
var localOrchestrator = new LocalOrchestrator (clientProvider, options, setup);

// Because we need the schema from remote side, create a remote orchestrator
var remoteOrchestrator = new RemoteOrchestrator (serverProvider, options, setup);

// Getting the schema from server side
var serverSchema = await remoteOrchestrator.GetSchemaAsync();

// At this point, if you need the schema and you are not able to create a_
RemoteQrchestrator

(continues on next page)

2.14. Provision, Deprovision & Migration 89

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// You can create a WebRemoteOrchestrator and get the schema as well

// var proxyClientProvider = new WebRemoteOrchestrator ("https://localhost:44369/api/
—~Sync");

// var serverSchema = proxyClientProvider.GetSchemaAsync();

// Provision everything needed (sp, triggers, tracking tables, AND TABLES)
await localOrchestrator.ProvisionAsync (serverSchema) ;

Deprovision

Like provisioning, deprovisioning uses basically the same kind of algorithm.

Hint: We don’t need the full schema to be able to deprovision a table, so far, a SyncSetup instance is enough to be
able to deprovision a database.

Warning: Once again, do not forget to save the metadatas in the scope tables, if needed.

Deprovisioning from server side, using a remote orchestrator:

// Create server provider
var serverProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString (serverDbName)) ;

// Create standard Setup and Options
var setup = new SyncSetup (new string[] { "Address", "Customer", "CustomerAddress" });
var options = new SyncOptions{();

// Create a server orchestrator used to Deprovision everything on the server side
var remoteOrchestrator = new RemoteOrchestrator (serverProvider, options, setup);

// Deprovision everything
await remoteOrchestrator.DeprovisionAsync();

Deprovisioning from client side, using a local orchestrator:

// Create client provider
var clientProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString (clientDbName)) ;

// Create standard Setup and Options
var setup = new SyncSetup (new string[] { "Address", "Customer", "CustomerAddress" });
var options = new SyncOptions();

// Create a local orchestrator used to Deprovision everything
var localOrchestrator = new LocalOrchestrator(clientProvider, options, setup);

// Deprovision everything
await localOrchestrator.DeprovisionAsync () ;

90 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

Migrating a database schema

During any dev cycle, you will probably have to make some evolutions on your server database.
Adding or deleting columns will break the sync process.

Manually, without the ProvisionAsync () and DeprovisionAsync () methods, you will have to edit all the
stored procedures, triggers and so on to be able to recreate a full sync processus.

We are going to handle, with a little example, how we could add a new column on an already existing sync architecture:

Hint: You will find this complete sample here : Migration sample

Basically, we can imagine having a sync process already in place:

// Create 2 Sql Sync providers

var serverProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString (serverDbName)) ;

var clientProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString(clientDbName)) ;

// Create standard Setup and Options
var setup = new SyncSetup (new string[] { "Address", "Customer", "CustomerAddress" });

var options = new SyncOptions{();

// Creating an agent that will handle all the process
var agent = new SyncAgent (clientProvider, serverProvider, options, setup);

// First sync to have a starting point
var sl = await agent.SynchronizeAsync (progress);

Console.WriteLine(sl);

Now, we are adding a new column on both side, in the Address table:

Hint: Here, using a tool like EF Migrations could be really useful.

S T
// Migrating a table by adding a new column
T

// Adding a new column called CreatedDate to Address table, on the server, and on the,
—client.

await AddNewColumnToAddressAsync (serverProvider.CreateConnection());

await AddNewColumnToAddressAsync (clientProvider.CreateConnection());

Then, using ProvisionAsync and DeprovisionAsync we can handle the server side:

e i
// Server side

-

// Creating a setup regarding only the table Address
var setupAddress = new SyncSetup (new string[] { "Address" });

(continues on next page)

2.14. Provision, Deprovision & Migration 91

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/Migration

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// Create a server orchestrator used to Deprovision and Provision only table Address
var remoteOrchestrator = new RemoteOrchestrator (serverProvider, options,
—setupAddress) ;

// Deprovision the old Address triggers / stored proc.

// We can keep the Address tracking table, since we just add a column,

// that is not a primary key used in the tracking table

// That way, we are preserving historical data

await remoteOrchestrator.DeprovisionAsync (SyncProvision.StoredProcedures
| SyncProvision.Triggers) ;

// Provision the new Address triggers / stored proc again,
// This provision method will fetch the address schema from the database,
// so it will contains all the columns, including the new Address column added
await remoteOrchestrator.ProvisionAsync (SyncProvision.StoredProcedures
| SyncProvision.Triggers) ;

Then, on the client side, using the schema already in place:

/e
// Client side
S e

// Creating a setup regarding only the table Address
var setupAddress = new SyncSetup (new string[] { "Address" });

// Now go for local orchestrator
var localOrchestrator = new LocalOrchestrator(clientProvider, options, setupAddress);

// Deprovision the Address triggers / stored proc.

// We can kepp the tracking table, since we just add a column,

// that is not a primary key used in the tracking table

await localOrchestrator.DeprovisionAsync (SyncProvision.StoredProcedures
| SyncProvision.Triggers);

// Provision the Address triggers / stored proc again,
// This provision method will fetch the address schema from the database,
// so it will contains all the columns, including the new one added
await localOrchestrator.ProvisionAsync (SyncProvision.StoredProcedures

| SyncProvision.Triggers);

2.15 Metadatas

All tracking tables maintains the state of each row. Especially for deleted rows.

For example, here is the content of the [Customer_tracking] after a successful sync:

SELECT » FROM [Customer_tracking]

92 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

CustomerlD update_scope_id timestamp timestamp_bignt sync_row_is_tombstone last_change_datetime
1o NULL (x00000000000007D1 2001 0 2020-08-25 12:55:52.923
2 (C4AT3CB.CFSD-41F2BEA5D002D4EBE455 NULL 0x00000000000007D2 2002 0 2020-08-25 12:55:52 923
1 245DD637-D7F5-4DCF-AICO-00027CBETDES NULL xDO000DDO00013778 79739 0 2020-08-25 12:56:28,643
4 28C92AD4-7AF7-4D63-9D190003255DAD7E NULL (xD0000D0DO00TFS0C 128396 0 2020-08-25 12:56:28.643
5 F55506F5-85C7-47A3SECS0003BF4SBISE NULL (x00000000000007D3 2003 0 2020-08-25 12:55:52 923
6 FOB35398-FSBB-4395-946D-0D03AEEEDHC NULL (xD00000D0D00144EE 83174 0 2020-08-25 12:56:28.643
7 DIBSCFEF-3DD5-4CAF-33E50003D6406510 NULL (xDOD00DDOD0OTE3BI 123827 0 2020-08-25 12:56:28.643

So, over time, we can have an increase of these tracking tables, with a lot of rows that are not useful anymore.
These metadatas rows are present on the server side of course, and also on the client side.

Note: If you are using the SqlSyncChangeTrackingProvider provider, you do not have to maintains and
manage the metadatas, since it’s handled by the SQL Server engine.

2.15.1 Client side

On the client side, once the client has made a synchronization with success, we can easily purge the metadata rows
from all the local tracking tables.

The CleanMetadatas option (boolean t rue / false available through the SyncOptions object) allows you
to clean automatically the _t racking tables metadata rows from your client databases.

If enabled, the client database will basically delete all the metadata rows from the tracking tables, after every successful
sync.

Note: The metadata rows purge mechanism will work only:

* If the client has downloaded something from the server. If there is no changes downloaded and applied on the
client, DeleteMetadasAsync () is not called

* On T-2 metadata rows. To be more secure, the T-1 values stays in the tracking tables.

So far, the client side is easy to maintain, since it’s by default, automatic. .. magic...

2.15.2 Server side

There is no automatic mechanism on the server side. Mainly because DMS does not know when he should clean the
metadata rows on the server.

Note: Indeed we can launch the metadata rows cleanup routine after every client synchronization, but it will lead to
an non-necessary overhead and will extend the time needed for each sync

Basically, the most important is to keep the metadata rows as long as one client needs them to retrieve the deleted /
updated rows.

Once all clients have made a sync and are up to date at time T, we can theoricaly supposing that the metadata rows
from 0 to T-1 are not needed anymore.

2.15. Metadatas 93

Dotmim.Sync, Release 0.9.5

The easiest way to achieve that, on the server side, is to create a schedule task and call the
DeleteMetadatasAsync method (from a console application, service windows, whatever...) with this kind
of code:

var rmOrchestrator = new RemoteOrchestrator (serverProvider, options, setup);
await rmOrchestrator.DeleteMetadatasAsync();

DMS will delete the metadata rows in the safest way to ensure no client become out-dated.

How does it work

What happens under the hood ?

DMS will try to get the min timestamp available from the scope_info_history table to ensure that no clients becomes
out-dated.

Basically, if you have this kind of scope_info_history table :

SELECT [sync_scope_id] , [sync_scope_name] , [scope_last_sync_timestamp], [scope_last_
—sync]
FROM [AdventureWorks]. [dbo].[scope_info_history]

Server database:

The

sync_scope_id sync_scope_name | scope_last_sync_timestamp | scope_last_sync
9E9722CD-... DefaultScope 2090 2020-04-01
AB4122AE-... | DefaultScope 2100 2020-04-10
DB6EEC7E-... | DefaultScope 2000 2020-03-20
E9CBB51D-... | DefaultScope 2020 2020-03-21
CC8A9184-... | DefaultScope 2030 2020-03-22
D789288E-... DefaultScope 2040 2020-03-23
95425970-. .. DefaultScope 2050 2020-03-24
5SB6ACCCO-... | DefaultScope 2060 2020-03-25

Min (scope_last_sync_timestamp)

will be 2000 and then

remoteOrchestrator.DeleteMetadatasAsync (2000);

Going further

DMS will internally call

Now imagine we have one client that did a first sync, and then never did a sync again for 3 years ... This situation
will lead to this kind of rows in the scope_info_history table:

SELECT [sync_scope_id]

—sync]
FROM [AdventureWorks]. [dbo].

, [sync_scope_name]

, [scope_last_sync_timestamp], [scope_last_

[scope_info_history]

Server database:

94

Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

sync_scope_id sync_scope_name | scope_last_sync_timestamp | scope_last_sync
9E9722CD-... DefaultScope 100 2017-04-01
AB4122AE-... | DefaultScope 2100 2020-04-10
DB6EEC7E-... | DefaultScope 2000 2020-03-20
E9CBBS1D-... | DefaultScope 2020 2020-03-21
CC8A9184-... DefaultScope 2030 2020-03-22
D789288E-... DefaultScope 2040 2020-03-23
95425970-. .. DefaultScope 2050 2020-03-24
5B6ACCCO-... | DefaultScope 2060 2020-03-25

Once again, if you call the remoteOrchestrator.DeleteMetadatasAsync () from your schedule task,
internally DMS will delete all rows where timestamp is inferior to 100 (and so far, all metadata rows existing before
year 2017)

It’s not really interesting to keep all the metadata rows from 2017 to 2020, just because of One client who never did a
sync since 2017...

Eventually we can assume this client has removed the app or changed his mobile device or whatever. We can argue
that this client can be considered as out-dated and will have to reinitialize everything if he tries to sync again.

Then how to create a scheduled taks with that will workaround this situation ?
Well, can make this assumption:
e We will run the DeleteMetadatasAsync () every month (or weeks, choose the best interval for you)

* Each run will take the Min (scope_last_sync_timestamp) from the scope_info_history table for all
client that have, at least, sync during the last 30 days.

The code became:

// get all history lines from ‘scope_info_history"
var histories = await remoteOrchestrator.GetServerHistoryScopes|();

// select only clients that have synced at least 30 days earlier
var historiesTwoWeeksAgo = histories.Where(h => h.LastSync.HasValue

&& h.LastSync.Value >= DateTime.Now.
—AddDays (=30)) ;

// Get the min timestamp
var minTimestamp = historiesTwoWeeksAgo.Min(h => h.LastSyncTimestamp) ;

// Call the delete metadatas with this timestamp
await remoteOrchestrator.DeleteMetadatasAsync (minTimestamp) ;

Grab this code, create a routine to execute every month, and your server database won’t growth too much because of
the tracking tables metadata rows.

2.16 Conflicts

2.16.1 Overview

Conflicts occurs when a client update / delete / insert a record that is updated / deleted or inserted on the server as well,
before any sync happened.

As an example, we can imagine a conflict occuring during an update on a column called “‘Street*:

2.16. Conflicts 95

Dotmim.Sync, Release 0.9.5

1) As astarting point, both server and client has a value of St reet=1 Bellevue Avenue after an initial sync
(where no conflicts occured).

2) Server is updating the row with a value of “/ bis Bellevue Avenue”.
3) Client is updating as well the same row value with “2 Bellevue Avenue”.
4) Sync is launched, and a conflict is raised on the server side.

Here is the diagram of the situation:

o @ o> #H<e-0

Street="1 Bellevue Avenue” — — —— — Street="1 Bellevue Avenue”

lSEnfer updates row iCHent updates row

Street="1 bis Bellevue Avenua” o Street="2 Bellevue Avenue”

l Launch sync

i Launch sync

o O o> <8
{} < Street="2 Bellevue Avenue”

Conflict “Update-Update occurs

Street="1 bis Bellevue Avenue”

1 bis Bellevue Avenue ?

2 Bellevue Avenue ?

By default, conflicts are resolved automaticaly using the configuration policy property
ConflictResolutionPolicy setinthe SyncOptions object:

You can choose:

* ConflictResolutionPolicy.ServerWins : The server is the winner of any conflict. this behavior is
the default behavior.

e ConflictResolutionPolicy.ClientWins : The client is the winner of any conflict.

Hint: Default value is ServerWins.

var options = new SyncOptions { ConflictResolutionPolicy = ConflictResolutionPolicy.
—ServerWins };

Here is the same diagram with the final step, where resolution is set to ServerWins (default value, by the way)

96 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

Street="1 bis Bellevue Avenue® ——» < ’S «— Street="2 Bellevue Avenue”

Conflict “Update-Update occurs

1 bis Bellevue Avenue ?

2 Bellevue Avenue ?

o Resolution : Server wins
.
) - o g w‘:’ﬁ- T a

Street="1 bis Bellevue Avenue” Street="1 bis Bellevue Avenue”

2.16.2 Resolution

Warning: A conflict is always resolved on the server side.

Depending on your policy resolution, the workflow could be:
* A conflict is generated on the client and the server side.
* The client is launching a sync processus.
» The server tries to apply the row and a conflict is generated.
* The server resolves the conflict on the server side.

* If the server wins, the resolved server row is sent to the client and is force-applied on the client database.

If the client wins, the server will force-apply the client row on the server. Nothing happen on the client, since
the row is correct.

Here is the workflow, when the conflict resolution is set to ServerWins in an HTTP mode:

2.16. Conflicts 97

Dotmim.Sync, Release 0.9.5

Web AP1

SqisyncProvider | | WebServer@rchestrator | WebClientOrchestrator SyncAgent ‘ | LocalOrchestrator Providers
Street="1 bis Bellevue Avenus” : Street="2 Bellevue Avenue”
ConflictResolutionPolicy = ServerWins

.

Street="1 bis Bellevue Avenue”

Street="1 bis Bellevue Avenue”

sqlsyncProvider | | webServerGrehestrator

| webClientOrchestrator || SyncAgent || LocalOrchestrator || Providers

Street="1 bis Bellevue Avenue”

ConflictResolutionPolicy = ClientWins
!

Street="2 Bellevue Avenue”

Street="2 Bellevue Avenue”

Street="2 Bellevue Avenue"

2.16.3 Handling conflicts manually

If you decide to manually resolve a conflict, the ConflictResolutionPolicy option will be ignored.

To be able to resolve a conflict, you just have to Intercept the ApplyChangedFailed method and choose the
correct version.

98 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

agent .OnApplyChangesFailed (args =>
{

// do stuff and choose correct resolution policy

)i

The ApplyChangeFailedEventArgs argument contains all the required properties to be able to resolve your
conflict.

You will determinate the correct version through the Action property of type ConflictResolution:

public enum ConflictResolution
{
/// <summary>
/// Indicates that the change on the server is the conflict winner
/// </summary>
ServerWins,

/// <summary>

/// Indicates that the change sent by the client is the conflict winner
/// </summary>

ClientWins,

/// <summary>

/// Indicates that you will manage the conflict by filling the final row and sent
—1it to

/// both client and server

/// </summary>

MergeRow,

/// <summary>

/// Indicates that you want to rollback the whole sync process
/// </summary>

Rollback

e ConflictResolution.ClientWins : The client row will be applied on server, even if there is a conflict,
so the client row wins.

e ConflictResolution.ServerWins : The client row won’t be applied on the server, so the server row
wins.

* ConflictResolution.MergeRow : It’s up to you to choose the correct row to send on both server and
client. the FinalRow instance will be used instead of Server or Client row.

You are able to compare the row in conflict through the Conflict property of type SyncConflict:
* Conflict.LocalRow : Contains the conflict row from the client side. This row is readonly.
* Conflict.RemoteRow : Contains the conflict row from the server side. This row is readonly.

e Conflict.Type : Gets the ConflictType enumeration. For example ConflictType.
RemoteUpdatelocalUpdate represents a conflict row beetween an updated row on the server and the
same row updated on the client as well.

You can use the current connection during this event to be able to perform actions on the server side through the
DbConnection and DbTransaction properties.
If you decide to rollback the transaction, all the sync process will be rollback.

2.16. Conflicts 99

Dotmim.Sync, Release 0.9.5

Eventually, the FinalRow property is used when you specify an Action to ConflictAction.MergeRow.

You decide what will contains the row applied on both server and client side. Be careful, the FinalRow property is

null until you specify the Act ion property to ConflictAction.MergeRow !

TCP mode

Manually resolving a conflict based on a column value:

agent .OnApplyChangesFailed (e =>
{
if (e.Conflict.RemoteRow.Table.TableName == "Region")
{
e.Action = (int)e.Conflict.RemoteRow["Id"] == 1 ?
ConflictResolution.ClientWins
ConflictResolution.ServerWins;

Manually resolving a conflict based on the conflict type :

agent .OnApplyChangesFailed(args =>
{
switch (args.Conflict.Type)
{
/S
case ConflictType.RemoteExistsLocalExists:
case ConflictType.RemoteExistsLocallsDeleted:
case ConflictType.RemoteIsDeletedLocalExists:
case ConflictType.RemoteIsDeletedLocallIsDeleted:
case ConflictType.RemoteCleanedupDeletelLocalUpdate:
case ConflictType.RemoteExistsLocalNotExists:
case ConflictType.RemoteIsDeletedLocalNotExists:
default:
break;

)i

Resolving a conflict by specifying a merged row :

agent .OnApplyChangesFailed (e =>
{

if (e.Conflict.RemoteRow.Table.TableName == "Region")

{
e.Action = ConflictResolution.MergeRow;
e.FinalRow["RegionDescription"] = "Eastern alone !";

Note: Be careful, the e . FinalRow is null until you set the Act ion property to ConflictAction.MergeRow

!

100

Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

HTTP Mode

We saw that conflicts are resolved on the server side, if you are in an HT'TP mode, involving a server web side, it is
there that you need to intercept failed applied changes:

[Route ("api/[controller]")]
[ApiController]
public class SyncController : ControllerBase

{

private WebServerOrchestrator orchestrator;

// Injected thanks to Dependency Injection
public SyncController (WebServerOrchestrator webServerOrchestrator)
=> this.orchestrator = webServerOrchestrator;

[HttpPost]
public async Task Post ()
{
try
{
orchestrator.OnApplyChangesFailed (e =>
{
if (e.Conflict.RemoteRow.Table.TableName == "Region")
{
e.Resolution = ConflictResolution.MergeRow;
e.FinalRow["RegionDescription"] = "Eastern alone !";
}
else

{

e.Resolution = ConflictResolution.ServerWins;

)i

var progress = new SynchronousProgress<ProgressArgs> (pa =>
Debug.WriteLine ("{0}\t{1}", pa.Context.SyncStage, pa.Message));

// handle request
await orchestrator.HandleRequestAsync (this.HttpContext, default,
—progress) ;

}
catch (Exception ex)
{

await orchestrator.WriteExceptionAsync (this.HttpContext.Response, ex);

/// <summary>
/// This Get handler is optional.
/// It allows you to see the configuration hosted on the server
/// The configuration is shown only if Environmenent == Development
/// </summary>
[HttpGet]
public Task Get ()
=> WebServerOrchestrator.WriteHelloAsync (this.HttpContext, orchestrator);

2.16. Conflicts 101

Dotmim.Sync, Release 0.9.5

2.16.4 Handling conflicts from the client side

As we said, all the conflicts are resolved from the server side.
But, using a Two sync trick, you are able to resolve the conflict from the client side.

Tip: This feature is only available from version 0.5.6

Basically the process is occuring in this order: - The first sync will raise the conflict and will be resolved on the server.
- The first sync will send back the resolved conflict to the client, containing the server row and the client row - From
the client side, you will now be able to ask the client to choose the correct version - The second sync will then send
back the new version of the row to the server.

Warning: To be able to use this technic, the ConflictResolutionPolicy MUST be set to ConflictResolutionPol-
icy.ServerWins

Here is a full example using this special trick:

var agent = new SyncAgent (clientProvider, serverProvider, options, setup);

var localOrchestrator = agent.LocalOrchestrator;
var remoteOrchestrator = agent.RemoteOrchestrator;

// Conflict resolution MUST BE set to ServerWins
options.ConflictResolutionPolicy = ConflictResolutionPolicy.ServerWins;

// From client : Remote is server, Local is client
// From here, we are going to let the client decides
// who is the winner of the conflict
localOrchestrator.OnApplyChangesFailed (acf =>
{

// Check conflict is correctly set

var localRow = acf.Conflict.LocalRow;

var remoteRow = acf.Conflict.RemoteRow;

// From that point, you can easily letting the client decides

// who 1is the winner

// Show a UI with the local / remote row and

// letting him decides what is the good row version

// for testing purpose; will just going to set name to some fancy BLA BLA value

// SHOW UI
// OH.... CLIENT DECIDED TO SET NAME TO "BLA BLA BLA"

// BE AS FAST AS POSSIBLE IN YOUR DESICION,
// SINCE WE HAVE AN OPENED CONNECTION / TRANSACTION RUNNING

remoteRow["Name"] = clientNameDecidedOnClientMachine;

// Mandatory to override the winner registered in the tracking table
// Use with caution !

// To be sure the row will be marked as updated locally,

// the scope id should be set to null

(continues on next page)

102 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

acf.SenderScopeld = null;
1)

// From Server : Remote 1is client, Local 1s server
// From that point we do not do anything,
// letting the server resolves the conflict and send back
// the server row and client row conflicting to the client
remoteOrchestrator.OnApplyChangesFailed(acf =>
{

// Check conflict is correctly set

var localRow = acf.Conflict.LocalRow;

var remoteRow = acf.Conflict.RemoteRow;

// remote 1is client; local 1s server
Assert.StartsWith("CLI", remoteRow["Name"].ToString());
Assert.StartsWith ("SRV", localRow["Name"].ToString());

Assert.Equal (ConflictResolution.ServerWins, acf.Resolution);
Assert.Equal (ConflictType.RemoteExistsLocalExists, acf.Conflict.Type);

)i

// First sync, we allow server to resolve the conflict and send back the result to_

—client
var s = await agent.SynchronizeAsync();

Assert.Equal (1, s.TotalChangesDownloaded);
Assert.Equal (1, s.TotalChangesUploaded);
Assert.Equal(l, s.TotalResolvedConflicts);

// From this point the Server row Name is STILL "SRV...."
// And the Client row NAME is "BLA BLA BLA..."
// Make a new sync to send "BLA BLA BLA..." to Server

s = await agent.SynchronizeAsync () ;
Assert.Equal (0, s.TotalChangesDownloaded);

Assert.Equal (1, s.TotalChangesUploaded) ;
Assert.Equal (0, s.TotalResolvedConflicts);

2.17 Filters

You can apply a filter on any table, even if the filtered column belongs to another table.

For instance, you can apply a filter on the Customer table, even if the filter is set on the Address table on the City
column.

In a nutshell, adding a filter for a specific table requires:
* Creating a SetupFilter instance for this table (you can not have more than one SetupFilter per table)
* Creating a [parameter] with a type and optionally a default value.

* Creating a [where] condition to map the [parameter] and a column from your table.

2.17. Filters 103

Dotmim.Sync, Release 0.9.5

* If your filtered table is not the base table, you will have to specify one or more [joins] methods to reach the base
filtered table.

2.17.1 Simple Filter

Note: You will find a complete sample here : Simple Filter sample

You have a straightforward method to add a filter, derivated from your SyncSetup instance:

setup.Filters.Add ("Customer", "CustomerID");

Basically, this method will add a filter on the Customer table, based on the Cust omerID column.
Internally, this method will:
¢ Creates a SetupFilter instance for the table Customer.

* Creates a Parameter called CustomerID that will have the same type as the Cust omerID column from the
Customer table.

* Creates a Where condition where the Cust omerID parameter will be compared to the Cust omerID column
from the Customer table.

Since you are creating a filter based on a table and a column existing in your SyncSetup, you don’t have to specify
type, joins and where clauses.

Here is another way to create this simple filter:

var filter = new SetupFilter ("Customer");

// Add a column as parameter. This column will be automaticaly added in the tracking,
—table

filter.AddParameter ("CustomerID", "Customer");

// add the side where expression, mapping the parameter to the column

filter.AddWhere ("CustomerID", "Customer", "CustomerID");

// add this filter to setup

setup.Filters.Add(filter);

This code is a little bit more verbose, but is a little bit more flexible in some circumstances

2.17.2 Complex Filter

Note: You will find a complete sample here : Complex Filter sample

Usually, you have more than one filter, especially if you have foreign keys in between. So far, you will have to manage
the links between all your filtered tables.

To illustrate how it works, here is a straightforward scenario:
1) We Want only Customers from a specific City and a specific Postal code.

2) Each customer has Addresses and Sales Orders which should be filtered as well.

104 Chapter 2. Need Help

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/SimpleFilter
https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/ComplexFilter

Dotmim.Sync, Release 0.9.5

ket SalesOrderHeader
? SabesOudesD PI———
§ SakesOudesDewilmD E—
Ry OeckeiDane
POl R
ShipDatie Address
: - | T Addeead

dreet SalesOrderDetail [T—

g j Akl ingE

Modifedlu v -

CustomerAddress o
Customer ? CustomedD RPICAATE
f CusciomesD 7 AddesD ConSiagion
BTy PE— PostaliCog:
i Crwguid g
ATl e Moddednas: MosdifiendDa b
L By
Lastbarr
it

P
FasswondHash
Pasawont
g v

We will have to filter on each level:
* Level zero: Address
¢ Level one: CustomerAddress
¢ Level two: Customer, SalesOrderHeader
* Level four: SalesOrderDetail

The main difference with the easy way method, is that we will details all the methods on the SetupFilter to create
a fully customized filter.

The setupFilter class

The SetupFilter class will allows you to personalize your filter on a defined table (Customer in this example):

var customerFilter = new SetupFilter ("Customer");

Warning: Be careful, you can have only one SetupFilter instance per table. Obviously, this instance will
allow you to define multiple parameters / criterias!

The .AddParameter () method

Allows you to add a new parameter to the _changes stored procedure.
This method can be called with two kind of arguments:

* Your parameter is a custom parameter. You have to define its name and its DbType. Optionally, you can define
if it can be null and its default value (SQL Server only)

2.17. Filters 105

Dotmim.Sync, Release 0.9.5

* Your parameter is a mapped column. Easier, you just have to define its name and the mapped column. This
way, Dotmim. Sync will determine the parameter properties, based on the schema

For instance, the parameters declaration for the table Cust omer looks like:

customerFilter.AddParameter ("City", "Address", true);
customerFilter.AddParameter ("postal"”, DbType.String, true, null, 20);

e City parameter is defined from the Address.City column.
* postal parameter is a custom defined parameter.

— Indeed we have a ‘‘PostalCode ‘‘ column in the ‘‘Address‘‘ table, that could be used here. But we will use
a custom parameter instead, for the example

At the end, the generation code should looks like:

ALTER PROCEDURE [dbo].[sCustomerAddress_Citypostal__ changes]
@sync_min_timestamp bigint,
@sync_scope_id uniqueidentifier,
@City varchar (MAX) NULL,
@postal nvarchar (20) NULL

Where @City is a mapped parameter and @postal is a custom parameter.

The .AddJoin () method

If your filter is applied on a column in the actual table, you don’t need to add any join statement.

But, in our example, the Customer table is two levels below the Address table (where we have the filtered columns
City and PostalCode)

So far, we can add some join statement here, going from Customer to CustomerAddress then to Address:

customerFilter.AddJoin (Join.Left, "CustomerAddress")
.On ("CustomerAddress", "CustomerId", "Customer", "CustomerId");

customerFilter.AddJoin (Join.Left, "Address")
.On ("CustomerAddress", "AddressId", "Address", "AddressId");

The generated statement now looks like:

FROM [Customer] [base]

RIGHT JOIN [tCustomer] [side]ON [base].[CustomerID] = [side].[CustomerID]
LEFT JOIN [CustomerAddress] ON [CustomerAddress].[CustomerId] = [base].[CustomerId]
LEFT JOIN [Address] ON [CustomerAddress].[AddressId] = [Address].[AddressId]

As you can see DMS will take care of quoted table / column names and aliases in the stored procedure.

Just focus on the name of your table.

The .Addwhere () method

Now, and for each parameter, you will have to define the where condition.
Each parameter will be compare to an existing column in an existing table.
For instance:

* The City parameter should be compared to the City column in the Address table.

106 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

* The postal parameter should be compared to the PostalCode column in the Address table:

// Mapping City parameter to Address.City column
addressFilter.AddWhere ("City", "Address", "City");

// Mapping the custom "postal" parameter to Address.PostalCode
addressFilter.AddWhere ("PostalCode", "Address", "postal");

The generated sql statement looks like this:

WHERE (
(
(
([Address].[City] = @City OR (@City IS NULL) AND ([Address].[PostalCode] = (@postal,
—OR (@postal IS NULL)
)
OR [side].[sync_row_is_tombstone] = 1

)

The .AddCustomWhere () method

If you need more, this method will allow you to add your own where condition.

Be careful, this method takes a st ring as argument, which will not be parsed, but instead, just added at the end of
the stored procedure statement.

Warning: If you are using the AddCustomWhere method, you NEED to handle deleted rows.

Using the AddCustomWhere method allows you to do whatever you want with the Where clause in the select
changes.

For instance, here is the code that is generated using a AddCustomWhere clause:

var filter = new SetupFilter("SalesOrderDetail");
filter.AddParameter ("OrderQty", System.Data.DbType.Intlé6);
filter.AddCustomWhere ("OrderQty = @OrderQty");

SELECT DISTINCT
WHERE (
(

OrderQty = @O0rderQty
)
AND

[side] . [timestamp] > @sync_min_timestamp

AND ([side].[update_scope_id] <> @sync_scope_id OR [side]. [update_scope_id] IS
—NULL)
)

The problem here is pretty simple.

1) When you are deleting a row, the tracking table marks the row as deleted (sync_row_is_tombstone =
1)

2) Your row is not existing anymore in the SalesOrderDetail table.

3) If you are not handling this situation, this deleted row will never been selected for sync, because of your where
custom clause . ..

2.17. Filters 107

Dotmim.Sync, Release 0.9.5

Fortunately for us, we have a pretty simple workaround: Add a custom condition to also retrieve deleted rows in
your custom where clause.

How to get deleted rows in your Where clause ?

Basically, all the deleted rows are stored in the tracking table.
* This tracking table is aliased and should be called in your clause with the alias side.
¢ Each row marked as deleted has a bit flag called sync_row_is_tombstone setto 1.
You don’t have to care about any timeline, since it’s done automatically in the rest of the generated SQL statement.

That being said, you have eventually to add OR side.sync_row_is_tombstone = 1 to your
AddCustomWhere clause.

Here is the good AddCustomWhere method where deleted rows are handled correctly:

var filter = new SetupFilter ("SalesOrderDetail");

filter.AddParameter ("OrderQty", System.Data.DbType.Intl6);

filter.AddCustomWhere ("OrderQty = @OrderQty OR side.sync_row_is_tombstone = 1");
setup.Filters.Add(filter);

2.17.3 Complete Sample
Here is the full sample, where we have defined the filters (City and postal code) on each filtered tables:
Customer, CustomerAddress, Address, SalesOrderHeader and SalesOrderDetail

You will find the source code in the last commit, project Dotmim.Sync.SampleConsole.csproj, file
program.cs, method SynchronizeAsync ():

var setup = new SyncSetup (new string[] {"ProductCategory",
"ProductModel", "Product",

"Address", "Customer", "CustomerAddress",
"SalesOrderHeader", "SalesOrderDetail" });

T

// Horizontal Filter: On rows. Removing rows from source
/-

// Over all filter : "we Want only customer from specific city and specific postal,,
—code"

// First level table : Address

// Second level tables : CustomerAddress

// Third level tables : Customer, SalesOrderHeader
// Fourth level tables : SalesOrderDetail

// Create a filter on table Address on City Washington
// Optional : Sub filter on PostalCode, for testing purpose
var addressFilter = new SetupFilter ("Address");

// For each filter, you have to provider all the input parameters

// A parameter could be a parameter mapped to an existing colum

// That way you don't have to specify any type, length and so on

// We can specify if a null value can be passed as parameter value

// That way ALL addresses will be fetched

// A default value can be passed as well, but works only on SQL Server (MySqgl is a_,
—damn ... thing)

(continues on next page)

108 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

addressFilter.AddParameter ("City", "Address", true);

// Or a parameter could be a random parameter bound to anything.

// In that case, you have to specify everything

// (This parameter COULD BE bound to a column, like City,

// but for the example, we go for a custom parameter)
addressFilter.AddParameter ("postal", DbType.String, true, null, 20);

// Then you map each parameter on wich table / column the "where" clause should be_
—applied

addressFilter.AddWhere ("City", "Address", "City");

addressFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add(addressFilter);

var addressCustomerFilter = new SetupFilter ("CustomerAddress");
addressCustomerFilter.AddParameter ("City", "Address", true);
addressCustomerFilter.AddParameter ("postal", DbType.String, true, null, 20);

// You can join table to go from your table up (or down) to your filter table
addressCustomerFilter.AddJoin (Join.Left, "Address")
.On ("CustomerAddress", "AddressId", "Address", "AddressId");

// And then add your where clauses
addressCustomerFilter.AddWhere ("City", "Address", "City");
addressCustomerFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add (addressCustomerFilter);

var customerFilter = new SetupFilter ("Customer");
customerFilter.AddParameter ("City", "Address", true);
customerFilter.AddParameter ("postal", DbType.String, true, null, 20);
customerFilter.AddJoin (Join.Left, "CustomerAddress")

.On ("CustomerAddress", "CustomerId", "Customer", "CustomerId");
customerFilter.AddJoin (Join.Left, "Address")

.On ("CustomerAddress", "AddressId", "Address", "AddressId");
customerFilter.AddWhere ("City", "Address", "City");
customerFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add(customerFilter);

var orderHeaderFilter = new SetupFilter ("SalesOrderHeader");
orderHeaderFilter.AddParameter ("City", "Address", true);
orderHeaderFilter.AddParameter ("postal", DbType.String, true, null, 20);
orderHeaderFilter.AddJoin (Join.Left, "CustomerAddress")

.On ("CustomerAddress", "CustomerId", "SalesOrderHeader", "CustomerId");
orderHeaderFilter.AddJoin (Join.Left, "Address")

.On ("CustomerAddress", "AddressId", "Address", "AddressId");
orderHeaderFilter.AddWhere ("City", "Address", "City");
orderHeaderFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add (orderHeaderFilter) ;

var orderDetailsFilter = new SetupFilter ("SalesOrderDetail");
orderDetailsFilter.AddParameter ("City", "Address", true);
orderDetailsFilter.AddParameter ("postal", DbType.String, true, null, 20);
orderDetailsFilter.AddJoin (Join.Left, "SalesOrderHeader")

.On ("SalesOrderHeader", "SalesOrderID", "SalesOrderDetail", "SalesOrderID");
orderDetailsFilter.AddJoin (Join.Left, "CustomerAddress")

.On ("CustomerAddress", "CustomerId", "SalesOrderHeader", "CustomerId");
orderDetailsFilter.AddJoin (Join.Left, "Address")

(continues on next page)

2.17. Filters 109

Dotmim.Sync, Release 0.9.5

(continued from previous page)

.On ("CustomerAddress", "AddressId", "Address", "AddressId");
orderDetailsFilter.AddWhere ("City", "Address", "City");
orderDetailsFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add (orderDetailsFilter);

And you SyncAgent now looks like:

// Creating an agent that will handle all the process
var agent = new SyncAgent (clientProvider, serverProvider, setup);

if (!agent.Parameters.Contains ("City"))
agent .Parameters.Add ("City", "Toronto");

// Because I've specified that "postal" could be null,
// I can set the value to DBNull.Value (and the get all postal code in Toronto city)
if (!agent.Parameters.Contains ("postal™))

agent .Parameters.Add ("postal", DBNull.Value);

// [Optional]: Get some progress event during the sync process

var progress = new SynchronousProgress<ProgressArgs> (
pa => Console.WriteLine('S$'"{pa.PogressPercentageString}\t {pa.Message}l"));
var sl = await agent.SynchronizeAsync (progress);

2.17.4 Http mode

Note: You will find a complete sample here : Complex Web Filter sample

If you’re using the http mode, you will notice some differences between the client side and the server side:
* The server side will declare the filters.

* The client side will declare the paramaters.

Server side

You have to declare your SetupFilters from within your ConfigureServices () method.

Pretty similar from the last example, excepting you do not add any SyncParameter value at the end:

public void ConfigureServices (IServiceCollection services)

{

services.AddControllers();

services.AddDistributedMemoryCache () ;
services.AddSession (options => options.IdleTimeout = TimeSpan.FromMinutes (30));

// Get a connection string for your server data source
var connectionString = Configuration.GetSection ("ConnectionStrings") [
—"DefaultConnection"];

(continues on next page)

110 Chapter 2. Need Help

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/FilterWebSync

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// Set the web server Options
var options = new SyncOptions
{
BatchDirectory = Path.Combine (SyncOptions.GetDefaultUserBatchDiretory(),
—"server")

}i

// Create the setup used for your sync process
var tables = new string[] {"ProductCategory",
"ProductModel", "Product",

"Address", "Customer", "CustomerAddress",
"SalesOrderHeader", "SalesOrderDetail" };

var setup = new SyncSetup (tables)

{
// optional

StoredProceduresPrefix = "s"
StoredProceduresSuffix = "",
TrackingTablesPrefix = "s",

nn

TrackingTablesSuffix
}i

// Create a filter on table Address on City Washington

// Optional : Sub filter on PostalCode, for testing purpose

var addressFilter = new SetupFilter ("Address");
addressFilter.AddParameter ("City", "Address", true);
addressFilter.AddParameter ("postal", DbType.String, true, null, 20);
addressFilter.AddWhere ("City", "Address", "City");
addressFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add (addressFilter);

var addressCustomerFilter = new SetupFilter ("CustomerAddress");
addressCustomerFilter.AddParameter ("City", "Address", true);
addressCustomerFilter.AddParameter ("postal", DbType.String, true, null, 20);
addressCustomerFilter.AddJoin (Join.Left, "Address")

.On ("CustomerAddress", "AddressId", "Address", "AddressId");
addressCustomerFilter.AddWhere ("City", "Address", "City");
addressCustomerFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add (addressCustomerFilter);

var customerFilter = new SetupFilter ("Customer");
customerFilter.AddParameter ("City", "Address", true);
customerFilter.AddParameter ("postal", DbType.String, true, null, 20);
customerFilter.AddJoin (Join.Left, "CustomerAddress")

.On ("CustomerAddress", "CustomerId", "Customer", "CustomerId");
customerFilter.AddJoin (Join.Left, "Address")

.On ("CustomerAddress", "AddressId", "Address", "AddressId");
customerFilter.AddWhere ("City", "Address", "City");
customerFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add (customerFilter);

var orderHeaderFilter = new SetupFilter ("SalesOrderHeader");
orderHeaderFilter.AddParameter ("City", "Address", true);
orderHeaderFilter.AddParameter ("postal", DbType.String, true, null, 20);
orderHeaderFilter.AddJoin (Join.Left, "CustomerAddress")

.On ("CustomerAddress", "CustomerId", "SalesOrderHeader", "CustomerId");

(continues on next page)

2.17. Filters 111

Dotmim.Sync, Release 0.9.5

(continued from previous page)

orderHeaderFilter.AddJoin (Join.Left, "Address")

.On ("CustomerAddress", "AddressId", "Address", "AddressId");
orderHeaderFilter.AddWhere ("City", "Address", "City");
orderHeaderFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add (orderHeaderFilter);

var orderDetailsFilter = new SetupFilter ("SalesOrderDetail");
orderDetailsFilter.AddParameter ("City", "Address", true);
orderDetailsFilter.AddParameter ("postal", DbType.String, true, null, 20);
orderDetailsFilter.AddJoin (Join.Left, "SalesOrderHeader")

.On("SalesOrderHeader", "SalesOrderID", "SalesOrderDetail", "SalesOrderID");
orderDetailsFilter.AddJoin (Join.Left, "CustomerAddress")

.On ("CustomerAddress", "CustomerId", "SalesOrderHeader", "CustomerId");
orderDetailsFilter.AddJoin (Join.Left, "Address")

.On ("CustomerAddress", "AddressId", "Address", "AddressId");
orderDetailsFilter.AddWhere ("City", "Address", "City");
orderDetailsFilter.AddWhere ("PostalCode", "Address", "postal");
setup.Filters.Add (orderDetailsFilter);

// add a SglSyncProvider acting as the server hub
services.AddSyncServer<SqglSyncProvider> (connectionString, setup, options);

public void Configure (IApplicationBuilder app, IWebHostEnvironment env)
{
if (env.IsDevelopment ())
app.UseDeveloperExceptionPage () ;

app.UseHttpsRedirection () ;

app.UseRouting() ;

app.UseSession();

app.UseEndpoints (endpoints => endpoints.MapControllers());

Client side

The client side shoud be familiar to you:

// Defining the local provider
var clientProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString (clientDbName)) ;

// Replacing a classic remote orchestrator
// with a web proxy orchestrator that point on the web api
var proxyClientProvider = new WebRemoteOrchestrator ("http://localhost:52288/api/Sync

—");

// Set the web server Options
var options = new SyncOptions
{
BatchDirectory = Path.Combine (SyncOptions.GetDefaultUserBatchDiretory (), "client")

}i

// Creating an agent that will handle all the process
var agent = new SyncAgent (clientProvider, proxyClientProvider, options);

(continues on next page)

112 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

(continued from previous page)

// [Optional]: Get some progress event during the sync process
var progress = new SynchronousProgress<ProgressArgs> (
pa => Console.WriteLine ($"{pa.ProgressPercentage:p}\t {pa.Message}"));

if (!agent.Parameters.Contains ("City"))
agent .Parameters.Add ("City", "Toronto");

// Because I've specified that "postal" could be null,
// I can set the value to DBNull.Value (and the get all postal code in Toronto city)
if (!agent.Parameters.Contains ("postal™))

agent .Parameters.Add ("postal", DBNull.Value);

var sl = await agent.SynchronizeAsync (progress);

2.18 Sqlite Encryption

2.18.1 Overview

* SQLite doesn’t support encrypting database files by default.
* Instead, we need to use a modified version of SQLite like SEE , SQLCipher , SQLiteCrypt , or wxSQLite3 .

* This article demonstrates using an unsupported, open-source build of SQLCipher, but the information also
applies to other solutions since they generally follow the same pattern.

Hint: You will find more information about Sqlite Encryption with Microsoft.Data.Sqlite Here .

Hint: You will find the sqlite encryption sample here : Sqlite Encryption Sample

2.18.2 Tweak the nuget packages

Basically, installing the packages needed to use Sqlite encryption is pretty simple. Just override packages:

dotnet add package Microsoft.Data.Sglite.Core
dotnet add package SQLitePCLRaw.bundle_e_sqglcipher

Your project file should be something like this:

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1l</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Dotmim.Sync.Sglite" Version="0.6.0" />
<PackageReference Include="Microsoft.Data.Sglite.Core" Version="5.0.2" />
<PackageReference Include="SQLitePCLRaw.bundle_e_sglcipher" Version="2.0.4" />

(continues on next page)

2.18. Sgqlite Encryption 113

https://www.hwaci.com/sw/sqlite/see.html
https://www.zetetic.net/sqlcipher/
http://www.sqlite-crypt.com/
https://utelle.github.io/wxsqlite3
https://docs.microsoft.com/en-us/dotnet/standard/data/sqlite/encryption?tabs=netcore-cli
https://github.com/Mimetis/Dotmim.Sync/blob/master/Samples/SqliteEncryption

Dotmim.Sync, Release 0.9.5

(continued from previous page)

</ItemGroup>
</Project>

Here is a screenshot of Visual Studio, after installing the packages:

4 +[c#] SqliteEncryption
4 § Dependencies
=l Frameworks
4 QA Packages
4 '@ Dotmim.Sync.Sqlite (0.6.0)
Pt Compile Time Assemblies
b @ Dotmim.Sync.Core (0.6.0)
4 '@ Microsoft.Data.Sqlite (5.0.1)
b '@ Microsoft.Data.Sqlite.Core (5.0.2)
[+E S0LitePCLRaw.bundle_e_sqlite3 (2.0.4)
‘® Dotmim.Sync.SqlServer (0.6.0)
‘® Microsoft.Data.Sqlite.Core (5.0.2)
B Microsoft.Extensions.Configuration Json (5.0.0)
+ﬂ S0LitePCLRaw.bundle_e_sglcipher (2.0.4)
+IT appsettings.json
IT appsettings.localjson

[+
[+
=
[+

P+ C* Program.cs

* As you can see, the Dotmim. Sync.Sglite is referencing the Microsoft.Data.Sglite package that
is referencing Microsoft.Data.Sglite.Core and SQLitePCLRaw.bundle_e_sglite3.

* Because we made references at the root level of Microsoft.Data.Sglite.Core and SQLitePCLRaw.
bundle_e_sqglcipher, these two packages will be used in place of the Microsoft.Data.Sglite’s
packages.

2.18.3 Code

The code is prett much the same code, just ensure you’re filling a Password in your Sqlite connection string:

// connection string should be something like "Data Source=AdventureWorks.db;
—Password=..."
var sqgliteConnectionString = configuration.GetConnectionString("SgliteConnection");

var clientProvider = new SgliteSyncProvider (sgliteConnectionString);

// You can use a SqgliteConnectionStringBuilder () as well, like this:

//var builder = new SqgliteConnectionStringBuilder();
//builder.DataSource = "AdventureWorks.db";
//builder.Password = "...";

2.19 Tables & Rows already existing

How to handle existing clients databases, with existing rows. ..

114 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

2.19.1 Default behavior

Before going further let’s see the default behavior of DMS, regarding this particular scenario where you have existing
rows in your client databases:

Basically, DMS will not take care of any existing client rows. On the first sync, these rows will stay on the client and
will not be uploaded to the server (On the other part, of course the server rows will be downloaded to the client)

(Obviously, after this first sync, if you are updating locally any of these existing rows, they will be handled on the next
sync)

The reason behind this behavior is to fit the scenario where you want to use a client database with some pre-existing
rows (for example a server backup downloaded to the client ?) and where you don’t wan’t to upload them to the server
(because they are already existing on the server)

Now, we can have a second scenario where you actually want to upload these pre-existing rows.

For this scenario, you have a special method, available on the LocalOrchestrator only, called
UpdateUntrackedRowsAsync that will mark all non tracked rows for the next sync.

2.19.2 UpdateUntrackedRowsAsync

Note: You will find a complete sample here : Already Existing rows

Assuming you have a client database with some pre-existing rows and before going further, be sure that your server
and client table has the same schema.

The workflow to handle these lines is:

¢ Make a first sync, to be sure we have all the required metadata locally (tracking tables, triggers, stored proc...)

— During this first sync, you will download the server rows as well.
* Call the UpdateUntrackedRowsAsync method to mark all non tracked client rows.
* Make a second sync to upload these rows to server.

Here is a small sample, following this workflow:

// Tables involved in the sync process:
var tables = new string[] { "ServiceTickets" };

// Creating an agent that will handle all the process

var agent = new SyncAgent (clientProvider, serverProvider, tables);
// Launch the sync process

// This first sync will create all the sync architecture

// and will get the server rows

var sl = await agent.SynchronizeAsync();

// This first sync did not upload the client rows.

// We only have rows from server that have been downloaded

// The important step here, done by 1lst Sync,

// 1s to have setup everything locally (triggers / tracking tables ...)
Console.WriteLine(sl);

// Now we can "mark" original clients rows as "to be uploaded"

(continues on next page)

2.19. Tables & Rows already existing 115

https://github.com/Mimetis/Dotmim.Sync/tree/master/Samples/AlreadyExistingDatabases

Dotmim.Sync, Release 0.9.5

(continued from previous page)

await agent.LocalOrchestrator.UpdateUntrackedRowsAsync () ;

// Then we can make a new synchronize to upload these rows to server
// Launch the sync process

var s2 = await agent.SynchronizeAsync();

Console.WriteLine (s2);

2.20 Multi scopes

In some scenario, you may want to sync some tables at one time, and some others tables at another time. For example,
let’s imagine we want to:

* Sync all the products during a certain amount of time.
 Sync all the customers and related sales, once we sure all products are on the client database.

This kind of scenario is possible using the multi scopes sync architecture

2.20.1 How does it work ?

On the client side, we store metadatas in the scope_info table.

By default, this table contains your whole sync information:
* A scope name: Defines a user friendly name (that is unique). Default name is DefaultScope.
* A schema, serialized: Contains all the tables, filters, parameters and so on, for this scope.
* A local last timestamp: Defines the last time this scope was successfully synced with the server.

¢ A server last timestamp: Defines the last time this scope was successfully synced, but from a server point of
view.

* A duration: Amount of times for the last sync.

[**xx%% Gepint for SelectTopNRows command from SSMS **%xx=xy

=ISELECT TOP (1@8@) [sync_scope_id]
,[sync_scope_name]
, [sync_scope_schema]
, [scope_last_server_sync_timestamp]
, [scope_last_sync_timestamp]
,[scope_last sync_duration]
,[scope_last_sync]

FROM [Client].[dbo].[scope_info]

131% -

B Resutts v Messages
id sync_scope_name sync_scope_schema scope_last_server_sync_timestamp scope_last_sync_timestamp scope_last_sync_duration scope_last_sync
DefaultScope {"sn""DefaultScope™"... 0 2000 30507930 2020-02-03 0. Default

2.20.2 Multi Scopes

To be able to create a multi scopes scenario, you just have to create two SyncSetup with named scope:

116 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

* Create two tables array, containing your tables for each scope
* Create two named sync setup.
 Create two agents for each scope

Here is a full example, where we sync separately the products, then the customers:

// Create 2 Sgl Sync providers

var serverProvider = new SglSyncChangeTrackingProvider (DbHelper.
—GetDatabaseConnectionString (serverDbName)) ;

var clientProvider = new SglSyncProvider (DbHelper.
—GetDatabaseConnectionString(clientDbName)) ;

// Create 2 tables list (one for each scope)

string[] productScopeTables = new string[] { "ProductCategory", "ProductModel",
—"Product" };

string[] customersScopeTables = new string[] { "Address", "Customer", "CustomerAddress
", "SalesOrderHeader", "SalesOrderDetail" };

// Create 2 sync setup with named scope
var setupProducts = new SyncSetup (productScopeTables, "productScope");
var setupCustomers = new SyncSetup (customersScopeTables, "customerScope");

// Create 2 agents, one for each scope
var agentProducts = new SyncAgent (clientProvider, serverProvider, setupProducts);
var agentCustomers = new SyncAgent (clientProvider, serverProvider, setupCustomers);

// Using the Progress pattern to handle progession during the synchronization
// We can use the same progress for each agent
var progress = new SynchronousProgress<ProgressArgs> (s =>
{
Console.ForegroundColor = ConsoleColor.Green;
Console.WriteLine ($"{s.Context.SyncStage}:\t{s.Message}");
Console.ResetColor();

var remoteProgress = new SynchronousProgress<ProgressArgs> (s =>

Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine ($"{s.Context.SyncStage}:\t{s.Message}");
Console.ResetColor();

}) i

// Spying what's going on the server side
agentProducts.AddRemoteProgress (remoteProgress) ;
agentCustomers.AddRemoteProgress (remoteProgress) ;

do
{

Console.Clear () ;

Console.WriteLine ("Sync Start");

try

{

Console.WritelLine ("Hit 1 for sync Products. Hit 2 for sync customers and sales

¥

var k = Console.ReadKey () .Key;

(continues on next page)

2.20. Multi scopes 117

Dotmim.Sync, Release 0.9.5

(continued from previous page)

if (k == ConsoleKey.D1l)
{
Console.WriteLine ("Sync Products:");
var sl = await agentProducts.SynchronizeAsync (progress);

Console.WriteLine(sl);

}

else

{
Console.WritelLine ("Sync Customers and Sales:");
var sl = await agentCustomers.SynchronizeAsync (progress) ;
Console.WriteLine(sl);

}

catch (Exception e)

{

Console.WriteLine (e.Message);

}
} while (Console.ReadKey () .Key != ConsoleKey.Escape);

Console.WriteLine ("End");

2.21 Debugging DMS

Thanks to Symbol files and Source Link, we’re able to debug the DMS framework from within our application,
without having to donwload the source code locally.

To be able to Step Into the code, we should configure Visual Studio to:
* Download the symbol files from nuget if available.
* Enable the source link to redirect the pdb information to the source code hosted on Github.

Once we’ve correctly configured our Visual Studio environment, we are able to Step Into the DMS code, during a
debugging session (or press F11):

bnalyze Tools Extensions Window Help Search (Ctrl+Q) o

b Continue = | g ; | e ¥ ot &;E E

Program.cs & X Step Into (F11)

118 Chapter 2. Need Help

Dotmim.Sync, Release 0.9.5

Your code :

51 do
55 {
56 J/f Console.Clear();
57 Lonsnlc.uriteLine(“Sync Start");
58 ©C try
59 {
68

2 61 jpar s1 = await agent.SynchronizeAsync(SyncType.Reinitialize);]
62
63 await agent.RemoteOrchestrator.DeleteMetadatasaAsync();
6l
65 // Write results
66 Console.WriteLine(s1);
67 H
68 catch (e)
69 { F11
70 //Console . WriteLine(e.Message);
T }

cdrs source code :

3au
351 E /f <summary=
352 //{ Launch a synchronization with the specified mode
353 f <=/ summary=>
354 E public async Tashk<SyncResult> SynchronizeAsync(SyncType syncType,
355 {
356 // checkpoints dates

2 357 var startTime = DateTime.UtcMow;
358 var completeTime = Datelime.UtcNow;
3594
360 /f for view purpose, if needed
361 if (this.LocalOrchestrator?.Provider = null)
362 this.LocalOrchestrator.Provider.Options = this.Options;
363

As you can see in the previous screenshot, we are actually step into the SynchronizeAsync method directly from
your code.

Behinds the scene, the .pdb file retrieves the correct filename and position and the Source link download the correct
file from the DMS Github repository .

Let’s see in details how to configure your Visual Studio environment:

2.21.1 Symbols packages

Symbol files (*.pdb) are produced by the .NET compiler alongside assemblies.

Symbol files map execution locations to the original source code so you can step through source code as it is running
using a debugger.

DMS publishes the symbols packages, containing the .pdb files, for each release to the nuget symbols server.

To be able to get the symbols, we should check we have Nuget as a symbol server availabe from our Visual Studio
options:

2.21. Debugging DMS 119

https://www.github.com/mimetis/dotmim.sync

Dotmim.Sync, Release 0.9.5

Go to Tools > Options > Debugging > Symbols:
¢ Verify we have Nuget.Org Symbol Servers checked.

* Uncheck Microsoft Symbol Servers, unless we want also to debug the .NET Core assemblies from within our
application.

Hint: If you don’t have the Nuget.Org Symbol option, you can add this url directly : https://symbols.nuget.org/
download/symbols

Options ? *

Search Options (Ctrl+E) £ Symbols
b Environment ~| Symbolfile (pdb) locations: +| 2|
b Projects and Solutions :
b Source Control [Microsoft Symbol Servers
b Work ltems MuGet.org Symbol Ser\rerl
[» Text Editor
4 Debugging

General

Just-In-Time

Output Window
[IntelliTrace
b Perfoermance Tools Warning: Using symbeol files frem an unknown or untrusted location can be harmful to
I Azure Data Lake }rnurcomputer.l o
b Azure Dev Spaces Tools LCache symbols in this directory:
b Azure Service Authentication ‘ Ch\Users\SPERTU~1.EURMVAppDatatLecalh Temp'\SymbelCache Browse...
[[: Ennta::r:e;'l'ools Load all symbeols Empty Symbol Cache

ross Platform
I Database Tools Automatic symbol loading preference:
4 F#TD_DIS (®) Load all modules, unless excluded
b IntelliCode Specify excluded modules
[» Live Share
b Live Unit Testing () Load only specified modules
I Modejs Tools v Specify included modules
0K Cancel

Now we are able to map the execution to the original source code location, but we still miss. .. the source code itself !
That’s why need also the Source link options.

2.21.2 Source link

Source Link is a technology that enables source code debugging of .NET assemblies from NuGet by developers.
Source Link executes when creating the NuGet package and embeds source control metadata inside assemblies and
the package.

Developers who download the package and have Source Link enabled in Visual Studio can step into its source code.
Source Link provides source control metadata to create a great debugging experience.

120 Chapter 2. Need Help

https://symbols.nuget.org/download/symbols
https://symbols.nuget.org/download/symbols

Dotmim.Sync, Release 0.9.5

Note: More information on source link technology: SourcelLink

To be able to use the Source link technolgy, we should verify the option is checked from within our Visual Studio
options:

Go to Tools > Options > Debugging > General:
¢ Uncheck Enable Just My Code
¢ Check Enable Source Link support

Options ? X
Search Options (Ctrl+E) £ General
[Environment ~ [v] Ask before deleting all breakpoints A
b Projects and Solutions Break all processes when one process breaks
b Source Control [] Break when exceptions crass AppDomain or managed/native boundaries (Manag
b Work [tems Enable address-level debugging
[» Text Editor [] Show disassembly if source is not available
4 Debugging Enable breakpoint filters
Use the new Exception Helper
Just-In-Time [] Enable Just My Code
Output Window Warn if no user code on launch (Managed only)
Symbols [] Enable .MET Framework source stepping
B IntelliTrace Step over properties and operators (Managed only)
- Performance Tools Enable property evaluation and other implicit function calls
b Azure Data Lake Call string-conversion function on ohjects in variables windows
b Azure Dev Spaces Tools [] Enable source server support
B Azure Service Authentication Print source server diagnostic messages to the Qutput window
I Container Tools Allow source server for partial trust assemblies (Managed only)
I Cross Platform Always run untrusted source server commands without prompting
- Database Tools I Enable Source Link support I
b F Tools [Fall back to Git Credential Manager authentication for all Source Link requests
I IntelliCode O Highlight entire source line for breakpoints and current statement (C++ only)
[Live Share Require source files to exactly match the criginal version "
D LiVE Ur”tTEgtlng (|_| Domelivm b =l Tl dbims e VA Al s bmncd bm bl imm smm =l mdem VAT il mias s
I Modegjs Tools v

We can now debug our code, and Step Into the DMS code as well.

If you need more information, you can check this documentation: Using Pdb and Source code

2.21. Debugging DMS 121

https://github.com/dotnet/sourcelink/blob/master/README.md
https://docs.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger?view=vs-2019

	Starting from scratch
	Need Help

